用户名: 密码: 验证码:
Stewart结构六维力传感器设计理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要研究内容包括Stewart平台六维力传感器的性能指标定义、坐标系变化对传感器静态特性的影响、六维力传感器的样机设计、传感器的静态标定研究等,并在此基础上开发了力驱动方式的六维鼠标。
     由于传感器的许多静态特性反应在其数学模型上,因此为便于深入研究,本文在前人研究的基础上,详细推导了Stewart结构六维力传感器的一阶静力影响系数矩阵、力雅可比矩阵等的解析表达式。分析了当坐标系变化时,传感器静态数学模型和Stewart结构的5个结构参数以及坐标系的6个参数之间的解析关系,为传感器性能指标的深入研究奠定了基础。
     对Stewart平台六维力传感器的力和力矩各向同性指标进行了研究,并具体研究了坐标系的变化对该性能指标的影响。为方便传感器的结构优化设计工作,利用空间模型理论绘制了力、力矩各向同性度性能图谱,总结了力各向同性度以及力矩各向同性度随机构参数的变化规律。
     定义了六维力传感器的灵敏度和灵敏度各向同性指标,研究了坐标系的变化对两者产生的影响,并绘制了相应的图谱。具体说明了如何有机地结合灵敏度指标和灵敏度各向同性指标优化设计传感器的力敏元件结构。
     在综合考虑传感器的力各向同性、灵敏度特性及传感器外型尺寸等多方面因素的情况下,研制了数种六维力传感器样机及信号处理系统,并设计了静态标定系统。
     以六维力传感器为核心,开发了力驱动方式的六维鼠标,研究了从六维力信号到被控对象的运动控制信号之间的转换方法。并开发了用于检验六维鼠标控制功能的虚拟6-SPS并联机器人系统,同时成功地将六维鼠标用于微操作机器人控制系统中。
     本文的研究成果对机器人六维力传感器及六维鼠标的进一步研究具有重要的理论意义和实际应用价值,对我国机器人的智能化发展具有重要的现实意义。
The main research in this thesis includes performance indices definition of the Stewart platform based 6-axis F/T sensor, influence on sensor's static indices of coordinate system, prototype design of the 6-axis F/T sensors, static calibration and so on. Based on this research, the force-drive mode 6-DOF mouse is developed.
    Sensors static performance indices rest with its static mathematical model. Therefore, for convenience of the deep research, based on the person study last, the thesis deduces the one order static force influence coefficient matrix, force Jacobian matrix in detail. It analyzes the analytic relationship between the static mathematical model and the parameters including 5 Stewart platform structure parameters and 6 coordinate system parameters when the coordinate system changing. It lays the foundations for studying sensor's performance indices deeply.
    The Stewart platform based 6-axis F/T sensor's force and torque isotropy indices are studied, and the influence on these two indices when coordinate system changing is also studied in the thesis. For convenience of the sensor structure design, the indices atlases are plotted using physical model of the solution space theory. Based on these atlases, the law of the indices following the changing of force sensing element structure parameters is summarized.
    It defines the 6-axis F/T sensor's sensitivity and its sensitivity isotropy, and studies the influence on them when the coordinate system changing, and plots their atlases respectively. The thesis analyses how to use the sensitivity index and sensitivity isotropy index to design the sensors structure concretely.
    Several types of 6-axis F/T sensor prototypes and signal processing system are developed with considering all the factors, including force isotropy, sensitivity, physical size and so on. The static calibration system is developed also.
    Based on the 6-axis F/T sensor, force-drive mode 6-DOF mouse is developed. Especially the methods transforming forces to movement velocities are studied. The thesis develops virtual 6-SPS parallel robot system to test the mouse's control functions. The 6-DOF mouse has been used in micromanipulator robot system successfully.
    The theories and results obtained in this thesis are very useful for the deep research of 6-axis F/T sensor and 6-DOF mouse. It is a matter of great significance to promote the development of Robot intelligentizing in our country.
引文
1 William Townsend. Robots to give a big hand to humans. Mass High Tech, 1999(2):1-2
    2 http://www.robotic.dlr.de/mechatronics/hand/img/egg.html
    3 Fleming, J. William, Raceu, Dumitru. Noncontact torque sensor. United States Patent, Patent No. 4 566 338, Date of Patent: 1986,1
    4 Hartung, Winfried, Gensheimer, Valentin. System for measuring the engagement pressure between cylinders of a printing press. United States Patent, Patent No. 4 625 568, Date of Patent:1986,12
    5 Angelbeck, J. John. Load bar weighing system United States Patent, Patent No. 4 657 096, Date of Patent: 1987,4
    6 Aoki, Hiroyuki, Yahagi, Shinichiro, Saito, Takanobu. Torque detecting device. United States Patent, Patent No. 4 840 073, Date of Patent:1989,6
    7 Beihoff, C. Bruce. Torque sensor. United States Patent, Patent No. 4 852 411, Date of Patent:1989,8
    8 Dobler, Dobler, Klaus, Hachtel, Hansjorg, Zimmermann, Georg. Process for contactless measurement of mechanical stress and device for carrying out the same. United States Patent, Patent No. 4 976 160, Date of Patent:1990,12
    9 Stuart, O. Keith. Force and torque measurement system. United States Patent, Patent No. 4 998 441, Date of Patent:1991,3
    10 Hesthamer, Tore, Tyren, Carl. Device for non-contact measuring of stresses in a bar-shaped body. United States Patent, Patent No. 5 020 378, Date of Patent:1991,6
    11 Ikeda, Hideo, Hamamura, Chiyo, Satoh, Hiroshi, Utsui, Yoshihiko. Strain detector. United States Patent, Patent No. 5 036 713, Date of Patent:1991,8
    12 Porkristl, Porkristl, Albert, Steinberger, Johann. Device for measuring the spacing between aligned rails. United States Patent, Patent No. 5 053 701, Date of Patent:1991,10
    13 Ch'Hayder, Ameur, Durand, Didier, Diaz, Constantino. Process for producing sensors for measuring spatial forces and sensors obtained. United States Patent, Patent No. 5 063 788, Date of Patent:1991,11
    14 Grant, P. Andris, Ballantyne, J. William. Force moment sensor. United States Patent, Patent No. 5 295 399, Date of Patent:1994,3
    
    
    15 袁哲俊,王娜君.机器人用六维力、力矩传感器.中国专利,专利号:CN-2066134U,日期:1990,11,21
    16 易秀芳,王容川.六分量力与力矩传感器.中国专利,专利号:CN-2233081U,日期:1996,8,14
    17 P. C. Watson, S. H. Drake. Pedestal Wrist Force Sensors for Industrial Assembly. Proc.of the 5th Int. Symp. on Industrial Robots, Chicago,1975:501-511
    18 B. Shimano, B. Roth. On Force Sensing Information and Its Use in Controlling Manipulators. Proc. of the 8th Int. Symp. On Industrial Robots. 1979:227-229
    19 Robot Technology. London:Kegon page Ltd, 1983
    20 J. Schott. Tactile Sensor With Decentralized Signal Conditioning. The 9th IMEKO World Congress,Beilin, 1982:138-143
    21 H.V. Brussel, H. Belien, H.Thielemans. Force Sensing for Advanced Robot Control. Proc. of the 5th Int. Conf. On Robot Vision and Sensory Controls.1980:279-288
    22 E. Kroll. Decoupling Load Components and Improving Robot Interfacing with as Easy-to-use 6-axis Wrist Force Sensor. Theory of Machines and mechanisms. Proc. of the 7th World Congress.1986:327-331
    23 Paolo Dario. Sensors and Sensory Systems for Advanced Robots. Germany:Springer-Verlag Berlin Geidelberg, 1988:429-445
    24 T. Yoshikawa, T. Miyazaki. A Six-axis Force Sensor with Three-dimensional Cross-shape Structure. Proc. of IEEE Conf. on Robotics and Automation. 1989, (1):249-255
    25 M. Uchiyama, E. Bayo, E. Palma-Villalon. A Systematic Design Procedure to Minimize a Performance Index for Robot Force Sensors. Trans. ASME, Journal of Dynamic Systems, Measurement, and Control. 1991,1(113):388-394
    26 E. Bayo, J. R. Stubbe. Six-axis Force Sensor Evaluation and a new Type of Optimal Frame Truss Design for Robotic Applicatons. Journal of Robotic Systems. 1989,6(2): 191-208
    27 Y. Hatamum. A Ring-Shape 6-axis Force Sensor and Its Application. Int. Conf. on Advanced Mechatronics, Tokyo,Japan,1989:647-652
    28 R. Little. Force/Toqrue Sensing in Robotic Manufacturing. Sensors,The Journal of Machine Perception. 1992,9(11):346-348
    29 M. Kaneko. Twin-Head Six-axis Force Sensors. IEEE Transactions on Robotics and Automation. 1996.12(1): 146-154
    30 S. Hirose, K. Yoneda. Robotic Sensors with Photo Detecting Technology. Proc. of
    
    the 20th ISIR, 1989:271-278
    31 S. Hirose, K. Yoneda. Development of Optical 6-axis Force Sensor and Its Signal Calibration Considering Non-Linear Interfence. Proc. of IEEE Int. Conf. on Robotics and Automation,1989,(1):45-63
    32 黄心汉,等.一种非径向三梁结构六维力传感器弹性体及其优化设计.机器人,1992,14(5):28-30
    33 X. B. Chen, Z. J. Yuan,et al. A Study on Six-axis Wrist Force Sensors for Robotics. Proc. of the Seventh International Manufacturing Conf. China.1995:124-126
    34 D. R. Kerr. Analysis,Properties and Design of a Stewart-Platform Transducer. J.Mech. Transm. Autom. Design. 1989,1(11):25-28
    35 C. C. Nguyen, S. S. Antrazi, Z. L. Zhou, C. E. Campbell Jr. Analysis and Experimentation of a Stewart Platform-based Force/Torque Sensor. International Journal of Robotics and Automation. 1992,7(3): 133-140
    36 C. Ferraresi, S. Pastorelli, M. Sorli, N. Zhmud. Static and Dynamic Behavior of a High Stiffness Stewart Platform-based Force/Torque Sensor. Journal of Robotic Systems. 1995, 12(12): 883-893
    37 T.A. Dwarakanath, Bhaskar Dasgupta, T.S. Mruthyunjaya. Design and Development of a Stewart Platform based Force-Torque Sensor. Mechatronics,2001,(11):793-809
    38 中国智能研究所,SAFMS-1型六维力传感器技术鉴定材料.1987
    39 李允明,C.S.George Lee.机器人腕部力传感器的标定.中国纺织大学学报,1986,2:97-99
    40 胡建元,黄心汉,等.机器人力传感器研究概括.传感器技术,1993(4):36-37
    41 黄心汉.机器人腕力传感器自动标定方法.自动化仪表,1992,14(5):79-83
    42 陈滨.机器人手腕测力装置.机械工程学报.1988,24(2):83-87
    43 Chul-Goo Kang. Closed-form Force Sensing of a 6-axis Force Transducer Based on the Stewart Platform, Sensors and Actuators,A 90,2001:31-37
    44 J.S. Dai, D. R. Kerr. A Six-component Contact Force Measurement Device Based on the Stewart Platform. Proc Instn Mech Engrs,C 214,2000:687-697
    45 M. Sorli, S. Pastorelli. Six-axis Reticulated Structure Forece/Torque Sensor with Adaptable Performances. Mechatronics 1995,5(5):585-601
    46 M. Uchiyama, K. A. Hakomori. Few Considerations on Structure Design of Force sensors. Proceedings of the Third Annual Conf. Japan Robotics Society, 1985:17-18
    47 A. Bicchi. A C iterion for Opeimal Design of Multi-axis Force Sensors. Robotics and Autonomous Systems, 1992,10(4):269-286
    
    
    48 D. Diddens, D. Reynaerts, H.Van Brussel. Design of a Ring-shaped Three-axis Micro Force/Torque Sensor. Sensors and Actuators, 1995,A 46-47:225-232
    49 http://www.iim.ac.cn/j3.htm
    50 熊有伦.机器人力传感器的各向同性.自动化学报,1996,22(1):10-18
    51 H. R. Wang, F. Gao, Z. Huang. Design of 6-axis Force/Torque Sensor Based on Stewart Platform Related to Isotropy. Chinese Journal of Mechanical Engineering, 1998,11(3):217-222
    52 金振林.新型六自由度正交并联机器人设计理论与应用技术研究.[燕山大学工学博士学位论文].2001:83-86
    53 金振林,高峰.新型3-2-1正交结构机器人六分量腕力传感器设计.机械设计与研究,2001,17(2):38-40
    54 张福学.现代实用传感器电路.北京:中国计量出版社,1997
    55 黄贤武.传感器原理及应用.成都:电子科技大学出版社,1999
    56 余瑞芳.传感器原理.北京:航空工业出版社,1995
    57 王洪瑞,陈贵林,高峰,黄真.基于Stewart平台的6维力传感器各向同性的进一步分析.机械工程学报,2000,36(4):49-52
    58 熊有伦.机器人学(力学、控制和编程).北京:机械工业出版社,1993
    59 李庆扬,王能超,易大义.数值分析.武汉:华中理工大学出版社,2000
    60 陈雄标,袁哲俊,姚英学.机器人用六维腕力传感器标定研究.机器人,1997,19(1):7-12
    61 刘辛军.并联机器人机构尺寸与性能关系分析及其理论研究.[燕山大学工学博士学位论文].1999:11-12
    62 黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997:135-137
    63 杨基厚,高峰.四杆机构空间模型与性能图谱.北京:机械工业出版社,1988:77-85
    64 T. H. Davies, J. E. Baker. A Finite 3-dimensional Atlases of 4-bar Linkages. Mechanism and Machine, 1979,14:145-152
    65 杨基厚.铰链四杆机构空间模型和尺寸.机械工程学报,1979,(2):173-176
    66 C. R. Barker, G. A. Weeks. A Physical Model of the Solution Space for Four Bar Mechanisms.Applied Mechanism Conference of USA.Nov. 1983:26-33
    67 J. H. Yang. The Space Model and Dimensinal Types of the Four-bar Mechanisms. M.M.T, 1987,22(1):71-76
    68 J. H. Yang, F. Gao. About the Diagrams of Max. and Min. Kiematic Influence Coeificients of Four-bar Mechanisms.The 4th IFTOMM, Inter. Sym. On Linkages
    
    and CAD Methods,1985,Ⅰ-1:141-152
    69 M. Uchiyama, Y. Nakamura, K. Hakomori. Evaluation of Robot Force Sensor Structure Using Singular Value Decomposition.Journal of the Robotics Society of Japan. 1987,5(1):4-10
    70 赵永生.多机器人系统的动力协调及性能研究.[燕山大学博士学位论文],1999:28-30
    71 黄田,汪劲松.Stewart并联机器人局部灵活度与各向同性条件解析.机械工程学报,1999(10):38-43
    72 高峰.并联机器人构型及其设计理论与应用研究.[燕山大学博士后研究工作报告],2001:99-103
    73 薛实福,李庆祥.精密仪器设计.北京:清华大学出版社,1991:203-211
    74 刘正士,陆益民,陈晓东,等.一种机器人多轴力传感器弹性体有限元分析.机械设计,1998,12(12):12-14
    75 赵汝嘉.机械结构有限元分析.西安:西安交通大学出版社,1990:8-85
    76 夏富杰.空间并联机构运动分析的有限元法.机械科学与技术,1998,17(1):60-62
    77 王晓晔,薛实福,李庆祥,等.用有限元法对原子力显微镜力传感器结构优化的研究.光学精密工程,1998,6(1):37-41
    78 F. J. Xia, C. L. Zhang. Finite Element Dynamic Analysis of Spatial Parallel Mechanisms. Chinese Journal of Mechanical Engineering, 1999,12(3):224-229
    79 J. B. Jonker. A finite Element Dynamic Analysis of Spatial Mechanisms with Flexible Links. Computer Methods in Applied Mechanics and Engineering,1989(76):17-40
    80 J. B.Jonker. A Finite Element Dynamic Analysis of Flexible Manipulators.International Journal of Robotics Research, 1990,9(4):59-74
    81 徐科军,李成.多维腕力传感器静态解耦的研究.合肥工业大学学报,1999,22(2):1-6
    82 张洪钺,黄劲东,范文雷.全最小二乘法及其在参数估计中的应用.自动化学报,1995,21(1):40-47
    83 吴涓,曹效英,宋爱国,等.Matlab在六维腕力传感器系统标定中的应用.传感技术学报,2001,(3):181-185
    84 李晓豁.三向力传感器的设计及其标定.黑龙江矿业学院学报,1999,9(3):1-5
    85 曾汉川.提高测力传感器的标定精度.重庆交通学院学报,1994,13(1):95-102
    86 李强,张维衡.多分量腕力传感器的标定方法.武汉造船,1995(4),10-13
    87 陈雄标,袁哲俊,姚英学.机器人用六维腕力传感器标定研究.机器人,1997,19(1):
    
    7-12
    88 刘正士.机器人六分量腕力传感器加载试验台系统误差分析.计量学报,1998,19(1):44-50
    89 张洪伟.时间序列分析法在六分力试验台上的应用.光学精密工程,1999,7(5):56-62
    90 曾鸣,王景贺.转台测角系统标定方法的研究.中国惯性技术学报,1998,6(4):84-88
    91 徐晓希,王伟国,吕春荣.专用传感器加载定度装置和方法的研究.机械设计与制造,1998,(5):39-40
    92 薛定宇.控制系统计算机辅助设计——MATLAB语言及应用.北京:清华大学出版社,1996
    93 Hanselmen, C.Duane. Masternig MATLAB:a Comprehensive Tutorial and Reference. Prentice Ha11,1996
    94 官章全,唐晓卫.Visual C++6.0编程实例详解.北京:电子工业出版社,1999
    95 徐力,陈佳海.Visual C++程序开发指南.北京:科学技术出版社,1997
    96 Evangelos Pitroutsos.Visual Basic从入门到精通.北京:电子工业出版社,1997
    97 齐敏,郝重阳.基于PC机的虚拟现实技术研究,光子学报,1998,27(3):276-279
    98 杨宝民,朱一宁.分布式虚拟现实的技术及其应用.北京:科学出版社,2000
    99 汪成为,高文,王行仁.灵境(虚拟现实)技术的理论、实现及应用.北京:清华大学出版社;广西:广西科学技术出版社,1996
    100 http://www.invent.org/hall_of_fame/53.html
    101 http://www.robotic.dlr.de/mmi/sm/
    102 Chen, Michael. A Technique for Specifying Rotations in Three Dimensions Using a 2D Input Device. In Proceedings IEEE Montech'87 - Compint'87,1987,MontrEal,118-120
    103 Evans, B. Kenneth, Tanner, P.Peter,et al. Tablet Based Valuators that Provides One, Two or Three Degrees of Freedom. Computer Graphics 1981,15(3): 91-97
    104 Nielson, M. Gregory, Olsen, Dan R. Jr. Direct Manipulation Techniques for 3-D Objects Using 2D Locator Devices. In Proceedings 1986 Workshop on Interactive 3-D Graphics (Chapel Hill, North Carolina, October 1986): 175-182
    105 S. M. Zhai. User Performance in Relation to 3D Input Device Design. Computer Graphics, 1998,32(4):50-54
    106 L. Parsons. Inability to Reason About an Object's Orientation Using an Axis and Angle of Rotation. Journal of Experimental Psychology:Human Perception and
    
    Performance, 1995,21(6):1259-1277
    107 http://www.cs.yale.edu/homes/toyama/surfball/surfball.html
    108 P. E. Jones, D. Garcia-Webb. Low-cost 3D Input Device for Next-Generation User Interface. Proceedings of First International Conference on Information, Communications & Signal Processing, Volume 3, IEEE Publications, Singapore, 9-12th September, 1997:1672-1676
    109 http://www.ee.uwa.edu.au/~peterj/proj.3d.html
    110 T. Takahashi, M. Kuzuya. 3-D Input Device using a Ball Rotation Interface, Proc. of 8th International Conference on Human Computer Interaction, 1999:397-401
    111 T. Takahashi, M. Kuzuya, Y. Seki: Three Dimesional Input Interface with a Ball Rotating Operation, Transaction of Information Processing Society of Japan, 1999, 40(2):399-404
    112 H. Nishino, K. Utsumiya, D.Kuraoka, K. Korida. Interactive Two-Handed Gesture Interface in 3D Virtual Environments. In Proc. ACM Symp. Virtual Reality Software and Technology. 1997:1-8
    113 R. Jain, R. Kasturi, B. G. Schunck. Machine Vision. McGraw Hill,1995
    114 R. Kjeldsen, J. Kender. Visual Hand Recognition for Window System Control. Proc. International Conference on Automatic Face and Gesture Recognition,1995:184-188
    115 R. Kjeldsen, J. Kender. Towards the use of Gesture in Traditional User Interfaces. Proc. International Conference on Automatic Face and Gesture Recognition, 1996:151-156
    116 M. Kohler. System Architecture and Techniques for Gesture Recognition in Unconstraint Environments. In Proc. Int. Conf. Virtual Systems and Multimedia,1997:137-147
    117 C. Maggioni. Gesture Computer - New Ways of Operating a Computer. Proc. International Conference on Automatic Face and Gesture Recognition, 1995:166-171
    118 D. Weimer, S.K. Ganapathy. Interaction Techniques using Hand Tracking and Speech Recognition. In Multimedia Interface Design, ed. M. Blettner and R. Dannenbergc, 1992,Addison-Wesley: 109-126
    119 J. Heindl, G. Hirzinger. Device for Programming Movements of a Robot Europ. Patent No. 0.108.348: US-Patent No. 4589810
    120 J. Dietrich, G. Plank, H. Kraus. Optoelectronic System Housed in Plastic Sphere, Europ. Patent No 0240023; US-Patent No. 4785180; JP-Patent No. 1763620
    121 G. Hirzinger, J, Dietrich, B. Gombert, J. Heindl, K. Landzettel, J. Schott. The
    
    Sensory and Telerobotic Aspects of the Space Robot Technology Experiment ROTEX, Int. Symposium, Artificial Intelligence, Robotics and Automation, in Space, Toulouse Labege, France, 1992
    122 C.Preusche, R.Koeppe, A.Albu-Schffer, M.Hhnle, N.Sporer, et al. Design and Haptic Control of a 6 DOF Force-Feedback Device. Workshop: Advances in Interactive Multimodal Telepresence Systems, 2001, München:29-30
    123 G. Hirzinger, B. Gombert, M.Herrmann. SPACE CONTROL: SPACE MOUSE, the Natural Man-machine Interface for 3D-CAD Comes From Space. ECUA'96 Conference for CATIA and CADAM Users in Europe,Gteborg, 1996, Sweden: 14-16
    124 G. Hirzinger, B. Gombert. Die Space Mouse bei der CAD-Arbeit. F&M Feinwerktechnik Mikrotechnik 1999:64-65
    125 高峰,金振林,赵现朝.新型并联结构6维控制器.中国专利,申请号01122211.5,2001.6.15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700