用户名: 密码: 验证码:
高硫铝土矿中硫在溶出过程中的行为及除硫工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国铝土矿资源的保障程度差,为了保证我国氧化铝工业的可持续发展,对我国的一些中高品位的高硫铝土矿进行脱硫工艺的研究,将缓解我国的供矿危机,同时由于硫在氧化铝生产中造成极大的危害,也需要在氧化铝生产过程中进行经济合理高效的脱硫方法的研究。本论文包括三个方面的内容:首先是关于高硫铝土矿硫的物相研究;其次是高硫铝土矿硫在溶出过程中的行为研究;第三是采用氧化焙烧、氧化钙焙烧对高硫铝土矿进行脱硫工艺的研究,最后采用湿式氧气氧化法对铝酸钠溶液进行脱除二价硫离子工艺的研究。
     首先,采用X射线衍射定性分析和硫的化学物相定量分析两种研究方法对高硫铝土矿硫的物相进行研究,结果表明:高硫铝土矿中的硫有的以硫化物型硫为主(主要是黄铁矿),有的以硫酸盐型硫为主,不同产地的铝土矿硫的主要存在形态是不同的;采用Na2CO3溶液洗涤工艺能有效地脱除铝土矿石中的硫酸盐,通过Na2CO3溶液洗涤后,原矿全硫含量下降到0.2%以下,从而符合生产中对硫含量的要求;确定高硫铝土矿中硫的主要存在形态对除硫方法的选择具有理论指导意义。
     其次,研究硫在溶出过程中的行为。采用广西高硫矿和低硫矿两种矿混合以获得不同硫含量的混合矿进行高压釜溶出试验,详细研究了在溶出过程中铝土矿中硫含量对硫转化率的影响、对铝酸钠溶液中二价硫离子浓度和铁含量的影响,通过在高压釜内对高硫铝土矿及自制的含不同硫离子的铝酸钠溶液进行溶出试验,研究了拜耳法溶出液中硫的形态、硫的转化规律及拜耳液中硫的去向。研究结果表明,铝土矿中硫含量越高,硫的溶出率越大、铝酸钠溶液中铁含量越大、二价硫离子的浓度越高,而且产品中的硫可以使氢氧化铝带色。高硫铝土矿溶出时,其溶出液的硫是各种形式的硫离子的混合物,各种形式的硫离子可以进行相互转换,溶液中的不同形式的硫离子一部分会留在溶液中,一部分会随着溶出产生的脱硅产物而随着赤泥带走,其中硫酸根离子最终以一元型含水硫铝酸钙和硫酸钙的形式随赤泥排出。
     针对一水硬铝石高硫型铝土矿,以河南矿石为原料,在马弗炉进行焙烧除硫及氧化钙焙烧除硫的研究,重点研究了氧化钙在焙烧过程中的作用。研究表明,矿石中硫的物相不同,其硫的脱除率不同,矿石经焙烧后,硫化物型硫含量降低,加CaO焙烧效果更好;同时CaO起到固硫的作用而降低焙烧过程SO2在空气中的排放,原矿在600℃,45min条件下焙烧时,排放到空气中的硫含量为0.51%,而加了1%的CaO后,则下降为0.31%;矿石经焙烧后,黄铁矿发生反应生成了赤铁矿Fe2O3,加氧化钙焙烧后,氧化钙起到固硫的作用,固硫主产物为CaSO4。焙烧后的矿石溶出液中S2-的含量显著降低,矿石的溶出性能更好。对于以黄铁矿为硫的主要物相的河南A铝土矿,在600℃、60min焙烧的矿石,与原矿同时在240℃,60min的条件下进行溶出试验,焙烧矿溶出液中S2-的含量由原矿的1.78g/L下降到0.15g/L,同时矿石的相对溶出率由85.27%提高到91.21%。
     鉴于铝酸钠溶液中二价硫离子使得铁的含量增加而影响氧化铝的品位,进行了往高压釜内通入氧气的湿式氧化法脱除拜耳液中的二价硫离子的工艺研究,首先探索各种因素对硫化物去除率的影响,后对湿式氧化法转化硫化物的规律和机理进行了初步探讨,结果表明:湿式氧气氧化法除硫率受釜内氧气起始平衡压力、反应温度、反应时间的影响;较适宜的操作条件为反应温度200℃,氧气起始平衡压力3.0MPa, S2的浓度为1g/L,此时S2-的去除率为99%。在高温高压下,铝酸钠溶液中的S2-大部分被氧化为SO42-,进行的是深度氧化,只有少部分S2-被氧化为硫代硫酸根、亚硫酸根及硫的其它形态;影响S2-氧化为SO42-主要是反应温度和氧气起始平衡压力,当温度高达260℃,氧气起始平衡压力达到1.0MPa,就有98%以上的S2-被氧化为SO42-。
At present, China's alumina industry has a very limited supply of high-grade bauxite resources. In order to bridge the gap between the natural shortage and the high industrial demand for high quality bauxite, an alternative solution to solve the shortage of high-grade bauxite is to develop a process of desulfurization for high sulfur containing bauxite. Moreover, sulfur can affect the production of alumina, so it is necessary to develop an economical and practical method for the removal of the sulfur in high sulfur-containing bauxite. This thesis is composed of three parts. The first part is the study on sulfur phase in high sulfur-containing bauxite; the second part is related to the behavior of sulfur in aluminate solution after digestion process by Bayer process; the third part is concerned with desulfuration of high sulfur bauxite by oxidation roasting, and the tretment of Bayer liquor containing divalent sulfur ions via wet oxidation process.
     Firstly, I investigated sulfur-presence phases of the ore by means of both the XRD and a chemistry quantitative analysis.The results show that high sulfur-containing bauxite is in the main form of sulfide sulfur (pyrite) and sulfate sulfur, and the main sulfur form of bauxites from different regions is not the same. Using sodium carbonate solution washing technology to wash bauxite can effectively remove sulfate sulfur. After washing process, the content of the total sulfur in ore is lowered to below0.2%and can meet the production requirements as to the sulfur content. Identification of the main sulfur form of high sulfur-containing bauxite can provide theoretical instruction for choosing methods for the removal of sulfur from bauxite.
     Secondly, the behavior of sulfur during digestion process was studied. Guangxi bauxite containing low amount of sulfur was mixed with Guangxi high sulfur-containing bauxite and was then digested, influence of content of sulfur on conversion of sulfur, on the concentration of S2-and on concentration of iron in aluminate solution was researched. Through digestion experiment using high sulfur-containing bauxite and aluminate solution containing various forms of sulfur in autoclave, the forms and the conversion mechanism of sulfur and the path of sulfur in Bayer liquor were investigated. The results show high amount of sulfur in bauxite would lead to more sulfur entering solution, and with the increase of sulfur in bauxite, iron and S2-concentration in aluminate solution rise significantly. In addition, the sulfur of aluminum hydroxide can make aluminum hydroxide colored. After high sulfur-containing bauxite is digested, the sulfur of aluminate solution is a mixture with various forms of sulfur, and various forms of sulfur can be mutually transformed; some of sulfur in bauxite remains in solution, some is discharged along with desiliconization substance of the red mud, but SO42-is finally discharged with the red mud in the form of3CaO·Al2O3·CaSO4·12H2O and CaSO4.
     In the third part, using the ore from Henan province, the oxidation roasting process of the desulfuration from the diasporic high sulfur-containing bauxite was studied in the muffle roaster and the action of CaO was emphasized. The results show that the roasting results of bauxite from the different main sulfur phase is not the same, and the content of sulfide (mainly pyrite) reduce with the addition of CaO after being roasted; CaO played the role of fixing sulfur and reduce the release of sulfur in the air. When the raw ore is roasted in the condition of600℃and45min, the release of sulfur in the air (S%) is0.51%, but lowers to0.31%when1%CaO is added to the ores; when CaO is added to the ores during roasting, pyrite reacts and hematite forms, CaO plays the role of fixing sulfur, and the main product of reaction of sulfur fixation is CaSO4. It can dramatically lower S2-concentration in aluminate solution and improve digestibility by roasting; Using Henan bauxite with mainly sulfide sulfur (pyrite), the S2" concentration in aluminates solution is0.15g/L after being roasted under the conditions of600℃,which is about10%of S2-concentration (1.78g/L) in the solution of digested raw ore under the same digesting conditions of240℃,60min60min,,and the extraction rate of aluminum increases to91.21%from85.27%.
     Because the iron content in alumina products was associated with bivalent sulfur ions in aluminate solution, the wet oxidation had been used to remove the bivalent sulfur ions in high pressure autoclave. The influence of various conditions on the removal of S2-and the oxidation mechanism was investigated in this thesis. The results show it can effectively remove the bivalent sulfur ions in high pressure autoclave with oxygen as the oxidizer by wet oxidation, the removal efficiency of bivalent sulfur ions is affected by the oxygen pressure inside the reactor, reaction temperature, reaction time. The optimum conditions for wet oxidation is the reaction temperature200℃, the oxygen pressure3.0MPa, S2-concentration of1g/L, under these conditions, the removal rate of S2-is99%. At high temperature and pressure, the majority of S2-in aluminate solution is oxidized to SO42-, only a small part of S2-is oxidized to thiosulfate, sulfite and other forms of sulfur; Conversion Of S2-to SO42-is mainly affected by the oxygen pressure and reaction temperature. When the temperature is up to260℃, the oxygen pressure reaches1.OMPa, more than98%of S2-is oxidized to SO42-.
引文
[1]程运材.平果铝土矿资源合理规划综合利用研究:[博士学位论文].长沙:中南大学,2008.
    [2]U.S. Geological Survey. Mineral Commodity Summaries,2008:29-31.
    [3]刘中凡.世界铝土矿资源综述[J].轻金属,2001,5:7-12
    [4]USGS(United States Geological Survey), Mineral Commodity Summaries:Bauxite and alumina. United States Government Printing office,Washington.2009.
    [5]Wanchao Liu, JiakuanYang, BoXia. Review on treatment and utilization of bauxite residues in China. Int.J.Miner.Process,2009,93:220-23
    [6]张伦和.合理开发利用资源实现可持续发展.有色金属,2009,5:25-28
    [7]顾松青.我国的铝土矿资源和高效低耗的氧化铝生产技术[J].中国有色金属学报,2004,14(1):91-97
    [8]Wei Sun, Kui Ouyang, Limin Zhang, et al. Preparation of hydrolyzate of hogwashoil(HHO) and its application in separating diaspore from kaolinite[J]. Minerals Engineering,2010,23:670-675
    [9]谭希发.穆新和.我国铝土矿资源合理开发利用探讨[J].矿产与地质,2002,5:313-315.
    [10]杨兵.铝土矿资源内贫外富[J].中国有色金属,2008,14:45-47
    [11]刘祥民.中国铝土矿资源可持续发展战略研究[J].中国金属通报,2005,14(3):9-11
    [12]翟义民.关于铝土矿的可持续发展分析[J].科技创新导报,2008,32:125-125.
    [13]黎林根,王冲.矿产资源与可持续发展研究[J].世界有色金属,2004,6:4-9
    [14]胡光,赵立仁.中国矿产资源的可持续发展[J].吉林地质,2000,19(2):35-38
    [15]刘天祥.合理开发利用矿产资源,走可持续发展之路[J].中国地质矿产经济,2001,2:27-30
    [16]全国矿产资源规划(2008-2015年.)
    [17]国务院公布《有色金属产业振兴规划》2009-05-11
    [18]何伯泉.试论我国高硫铝土矿脱硫新方案[J].轻金属,1996,12:3-5.
    [19]李天庚,李自如,张且凡.世界铝工业发展与我国的对策[J].世界有色金属,1999,10:14-68.
    [20]Shu-hua Ma, Zong-guo Wen, Ji-ning Chen, et al. An environmentally friendly design for low-grade diasporic-bauxite processing[J]. Minerals Engineering 2009,22:793-798
    [21]Changmiao Liu, Yuehua Hu, Xuefeng Cao. Substituent effects in kaolinite flotation using dodecyl tertiary amines[J]. Minerals Engineering,2009,22: 849-852.
    [22]崔萍萍,黄肇敏,周素莲.我国铝土矿资源综述[J].轻金属,2008,2:6-8
    [23]赵声贵.烷基胍硫酸盐系列捕收剂的合成及其对铝硅酸盐矿物的浮选性能:[硕士学位论文].长沙:中南大学,2007
    [24]李美娟,陈祺.我国铝土矿资源的合理开发与保护[J].有色金属技术经济研究,1995,7:34-36
    [25]兰军,吴贤熙,解元承,等.铝土矿生产氧化铝过程脱硫方法的研究进展[J].应用化工,2008,37(4):446-448
    [26]陈文汨,谢巧玲,胡小莲等.高硫铝土矿反浮选除硫试验研究[J1.矿冶工程,2008,6:35-37
    [27]谢巧玲.高硫铝土矿的溶出行为和反浮选脱硫的研究:[硕士学位论文].长沙:中南大学,2009.
    [28]黄茜蕊,黄仲权.我国铝资源、铝工业现状、问题与发展[J].矿产保护与利用,2007,3:10-15
    [29]Liu Y, Lin C, Wu Y. Characterization of red mud derived from a combined Bayer process and bauxite calcination method[J]. Journal of Hazardous Materials,2007, 146:255-261
    [30](美)Errol.D.Sehnke王向丽译.二十世纪九十年中期世界铝土矿和氧化铝生产能力.氧化铝生产文集,中国长城铝业公司科技部,1997:1-9.
    [31]王艳利.后加矿增溶溶出技术处理我国一水硬铝石矿的研究:[硕士学位论文].沈阳:东北大学,2005
    [32]陈岱.国际铝工业对冶金级氧化铝的质量要求和发展趋势[J].轻金属,1996,(3):10-18.
    [33]钮因健.对我国铝土矿资源和氧化铝工业发展的认识[J].轻金属,2003,(3):3-8.
    [34]毕诗文.氧化铝生产工艺[M].北京:化学工业出版社,2006:313-321
    [35]赵清杰.硅矿物及有机物在拜耳法生产氧化铝过程中的行为:[博士学位论文].长沙:中南大学,2008
    [36]黎志英.贵州高硫铝土矿溶出性能研究:[硕士学位论文].贵州:贵州大学,2006
    [37]毕诗文.氧化铝生产工艺[M].北京:化学工业出版社,2006:96-102
    [38]江兵.在拜耳法工艺中用硫化物除锌的研究:[硕士学位论文].长沙:中南大学,2006
    [39]王晓民.高硫铝土矿浮选除硫的工艺稀有金属[J].2009,33(5):728-732
    [40]G. K Abikenova, V A Kovzalenko, G. A Ambarnikova, et al. Investigation of the Effect and Behavior of Sulfur Compounds on the Technological Cycle of Alumina Production[J]. Russian Journal of Non-Ferrous Metals,2008,49(2): 91-96.
    [41]Zafar Iqbal Zafar. Determination of semi-empirical kinetic model for dissolution of bauxite ore with sulfuric acid:Parametric cumulative effect on the Arrhenius parameters[J]. Chemical Engineering Journal,2008,141:233-241.
    [42]Malito J T,钟社恩译.拜耳法溶液中硫酸钠的平衡溶解度.国外氧化铝新技术文集,1985,1:12-15
    [43]张念炳,蒋宏石,吴贤熙.高硫铝土矿溶出过程中硫的行为研究[J].轻金属,2007,7:7-10.
    [44]刘桂华,高君丽,李小斌,等.拜耳法高压溶出液中铁浓度变化规律的研究[J].矿冶工程,2007,27(5):38-40.
    [45]陈文汨,陈学刚,郭金权,等.拜耳液中铁的行为研究[J].轻金属,2008,4:14-18
    [46]阿布拉曼夫,B.Я,陈谦德译.碱法综合处理含铝原料的物理化学原理[M].长沙:中南工业大学出版社,1988:178-182.
    [47]毕诗文,杨毅宏,谢雁丽.21世纪初中国氧化铝工业的发展[J].矿业研究与开发,2003,3:33-35
    [48]吕鲜翠,唐海红.氧化铝质量的改善及其对铝电解的影响[J].中国有色冶金,2006,4:14-17
    [49]李旺兴,尹中林,刘战伟.浅谈氧化铝质量问题[J].轻金属,2007,11:8-12
    [50]Zhao J C, Hu X D, Long Y H, et al. Study on the coal desulfurization by dilute alkali/acid treatment and its mechanism[J]. Fuel Sci Technol Int,1994,12 (9): 1183-1191
    [51]Fan C W, Markuszewski R, Wheelock T D. Behavior of quartz, kaolinite, and pyrite during alkaline leaching of coal[M]. Acs Symposium Series,1986,9: 462-472.
    [52]Culfaz M, Marouf A, Sevif G. Removal of mineral matter and sulfur from lignites by alkali treatment[J]. Fuel Processing Technology,1996,47(2):99-109.
    [53]Tijen Ozbas Bozdemir, Tulay Durusoy. Chemical desulfurization kinetics of Mengen lignite in aqueous sodium carbonate[J]. Energy Sources,1999,22((9): 811-820
    [54]Demirbas A. Demineralization and desulfurization of coals via column froth flotation and different methods[J]. Energy Conversion and Management.2002, 43 (7):885-895
    [55]蒋洪石.石灰拜耳法生产氧化铝的脱硫研究:[硕士学位论文].贵州:贵州大学,2007.
    [56]谢眠.论铝土矿选矿的必要性和可行性[J].国外金属矿选,1991,Z1:69-76
    [57]罗琳,何伯泉.高硅铝土矿焙烧预脱硅研究现状评述[J].金属矿山,1999,271(1):31-35.
    [58]罗琳,何伯泉.高硅铝土矿焙烧预脱硅研究现状评述[J].金属矿山,1999,271(1):31-35.
    [59]#12
    [60]#12
    [61]#12
    [62]李光辉.—水硬铝石型铝土矿焙烧-碱浸脱硅工艺及机理研究:[硕士学位论文].长沙:中南工业大学,1999.
    [63]#12
    [64]罗琳,刘永康,何伯泉.—水硬铝石高岭石型铝土矿焙烧脱硅热力学机理研究[J].有色金属,1999,51(1):25-29.
    [65]刘永康.—水硬铝石型铝土矿化学选矿中焙烧过程的研究:[博士学位论文].长沙:中南工业大学,1997.
    [66]杨金妮,高晓辉,卜天梅,等.烧结法脱硅新工艺的探索[J].有色金属:冶炼部分,2003,3:30-31
    [67]姜涛,李光辉,范晓慧,等.—水硬铝石型铝土矿焙烧-碱浸脱硅新工艺(Ⅰ)[J].中国有色会属学报,2000,10(4):534-538
    [68]吕国志,张延安,鲍丽,等.高硫铝土矿的焙烧预处理及焙烧矿的溶出性能[J].中国有色金属学报,2009,19(9):1684-1689.
    [69]吕国志,张廷安,鲍丽,等.高硫铝土矿的焙烧预处理过程[J].工程学 报,2008,8(5):892-896.
    [70]梁爱珍.国外铝土矿选矿研究概况[J].国外金属矿选矿,1983,5:31-36.
    [71]Mohammad Zarbayani, Esmaeil Jorjani, Mirsaleh Mirmohammadi, et al. Mineralogical and sink-float studies of Jajarm low-grade bauxite[J]. International Journal of Minerals, Metallurgy and Materials,2010,17(3): 251-256.
    [72]Liuyin Xia, Hong Zhong, Guangyi Liu, et al. Flotation separation of the aluminosilicates from diaspore by a Gemini cationic collector[J]. Int.J.Miner.Process.,2009,92:74-83.
    [73]C ШемЯкпн.在碱性铝酸盐溶液中浮选铝土矿[J].国外金属矿选矿,1986,4:24-26
    [74]胡岳华,王毓华,王淀佐,等.铝硅矿物浮选化学与铝土矿脱硅[M].北京:科学出版社,2004,92-255
    [75]凌石生,章晓林,尚旭,等.铝土矿物理选矿脱硅研究概述[J].国外金属矿选矿,2006,43(7):9-12:
    [76]黄传兵,王毓华.铝土矿反浮选脱硅研究综述[J].金属矿山,2005,(6):21-24
    [77]陈湘清.硅酸盐矿物强化捕收与一水硬铝石选择性抑制的研究:[博士学位论文].长沙:中南工业大学,2004.
    [78]胡熙庚,黄和慰.浮选理论与工艺[M].长沙:中南大学出版社,1991,105-106
    [79]胡为柏.浮选[M].北京:冶金工业出版社,1982:201-21
    [80]胡熙庚.有色金属硫化矿选矿[M].北京:冶金工业出版社,1987:379-414
    [81]师伟.烃基黄药浮选捕收剂光化学降解性能研究:[硕士学位论文].武汉:武汉理工大学,2007
    [82]王晓民,张廷安,吕国志,等.丁黄药用作高硫铝土矿浮选除硫的捕收剂[J].过程工程学报,2009,9(3):498-502
    [83]朱建光.浮选药剂[M].北京:冶金工业出版社,1993,4:15-81
    [84]陈绍华,烃基黄药类捕收剂的生物降解性研究[硕士学位论文].武汉:武汉理工大学2009
    [85]In Y, Lin C X, Wu Y G. Characterization of red mud derived from a combined Bayer process and bauxite calcination method [J]. Journal of Hazardous materials,2007,146(1/2):255-261.
    [86]Haronl Eyer, Suresh Bhargava, Matt Sumich. Removal of organic from Bayer liquor and wet oxidation [J]. Light Metals,2000,3:45-51.
    [87]Piga L, Pocheyyi F, Sstoppa L. Application of thermal analysis techniques to a sample of Red Mud-a by-product of the Bayer process-for magnetic separation[J]. Thermochimica Acta,1995,254:337-345.
    [88]何润德,王金生,袁华俊.氧化钡除硫方法在氧化铝生产中的应用前景[J].轻金属,1990,(7):15-18
    [89]何润德.论用铝酸钡除工业铝酸钠溶液中硫的经济合理性[J].贵州工业大学学报,2000,29(6):54-58
    [90]何润德.工业铝酸钠溶液氢氧化钡除硫[J].有色金属,1996,48(4):63-66
    [91]张念炳.用贵州高硫铝土矿生产氧化铝时的脱硫新方法研究一重点脱硫条件和效果研究:[硕士学位论文].贵州:贵州大学,2006
    [92]谭鸿喜.主要排硫方法简介与评述[J].轻金属,1982,7:10-14
    [93]Luck F. Wet air oxidation:past, present and future[J]. CatalysisToday,1999,53: 81-91
    [94]Neil B. Method for removing organic substances from caustic aluminate liquors[P].U S Patent,4,668,486,1987-5-26
    [95]Soucy G, Larocque J E, Forte G. Organic control technologies in Bayer process[J]. Light Metals,2004,3:109-114.
    [96]Inao, Jun-ichi, Yamada, et al. Method for the removal of organic substances from alkali metal aluminate solution[P]. U S.Patent,4,215,094,1980-7-29.
    [97]Alan P, The P J. Removal of organic contaminants from bauxite and other ores[P]. U S Patent,4,519,989,1985-5-28
    [98]陈文汨,陈学刚.湿式氧化法在拜耳法中的应用及待解决问题(2)[J].轻金属,2008,7:11-16
    [99]Bhargava S K., Tardio J.12 years of experience with wet oxidation[J]. Light Metals,2002,4:177-180
    [100]Foster B J, Roberson M L. Removal of HMW organic compounds by partial wet oxidation[J]. Light Metals,1988,2:38-42
    [101]Loh J S C, Brodie G M, Power G, Vernon C F. Wet oxidation of precipitation yield inhibitors in sodium aluminate solutions:Effects and proposed degradation mechanisms. Hydrometallurgy.2010,104(2):278-289
    [102]Jackie D, Power G, Loh J S C, et al. Fundamentals of Wet Oxidation of Bayer-Process Liquor:Reactivity of Malonates. Ind. Eng. Chem.Res,2010,49 (11):5347-5352.
    [103]Rosenberg S P, Tichbon W. Organic impurity removal process for Bayer liquors[P]. US Patent,6,555,077,2003-4-29
    [104]Arnswald W. Removal of organic carbon from liquor by wet oxidation in tube digesters[J]. Light Metals,1991,9:23-27
    [105]The P J, Williams F S, Guthrie J D. Mass transfer studies on wet oxidation of Bayer liquor[J]. Light Metals,1985,3:103-116
    [106]Eyer S L, Bhargava S, Sumich M. Removal of organic from Bayer liquor and wet oxidation[J]. Light Metals,2000,7:45-51.
    [107]张念炳,白晨光,黎志英,等.高硫铝士矿中含硫矿物赋存状态及脱硫效率研究[J].电子显微学报,2009,28(3):229-234.
    [108]张琦.硫物相测定方法的应用[J].黄金,2006,11:52-54
    [109]卢龙,王汝成,薛纪越,等.铁矿风化过程中元素的活性及对环境的影响[J].地质论评,2001,47(1):95-101.
    [110]K.L.隆赛蓝德,I.w瓦尔克.浮选原理[M].北京:冶金工业出版社,1966:190-192
    [111]《联合法生产氧化铝》编写组.联合法生产氧化铝控制分析[M].北京:冶金工业出版社,1977,140-142.
    [112]杜雅琦,张宗涛,刘燕,等.离子色谱法测定地质钻探泥浆中的无机阴离子[J].化学工程师2010,173(2):27-29
    [113]钟付金.铝酸钠溶液中有机物赋存状态的研究:[硕士学位论文].长沙:中南大学,2007
    [114]贾凤珍.新邻二氮菲分光光度法测定天然水中微量铁[J].天津师大学报(自然科学版),1994,14(4):31-33
    [115]蒋洪石,孙鸿,李树勋.水合硫铝酸钙对脱硫效果的影响[J].安微化工2008,34(4):30-33
    [116]易平贵,俞庆森,宗汉兴.黄铁矿化学脱硫的热力学分析[J].煤炭转化,1999,22(1):47-52
    [117]Qi Y Q, Li W, Chen H K, et al. Desulfurization of Coal through Pyrolysis in a Flucdized-bed Reactor Under Nitrogen and 0.6% O2-N2 Atmosphere [J]. Fuel and Energy Abstracts,2004,45(6):705-712.
    [118]中学教师化学手册编委金著.中学教师化学手册[M].北京:科学普及出版社,1981
    [119]何云华.煤灰成分对燃煤固硫效果的影响[J].洁净煤技术,2002,8(2):52-54
    [120]张明旭,闵凡飞,栗元龙.煤中硫在燃烧过程中析出规律的热分析模拟研究[J].淮南工业学院学报,2002,22(4):40-44
    [121]周秋生,李小斌,彭志宏,等.—水硬铝石焙烧矿增浓溶出及其机理[J].中南工业大学学报,2001,32(4):390-392
    [122]李小斌,杨重愚.焙烧过程对于—水硬铝石型铝土矿溶出性能的影响[J].轻金属,1987,(4):9-14.
    [123]肖海平,周俊虎,刘建忠,等.钙基固硫过程中硫存在形态的转变[J].燃烧科学与技术,2008,14(1):32-38
    [124]Cheng J, Zhou J H, Liu J Z, et al. Sulfur removal at high temperature during coal combustion in furnaces:a review [J]. Progress in Energy and Combustion Science,2003,29:381-405.
    [125]Lyngfelt A, Leckner B. SO2 capture in fluidized-bed boilers:re-emission of SO2 due to reduction of CaSO4[J]. Chemical Engineering Science,1989,44: 207-213.
    [126]孙洪涛,张述伟,马纯聪,等.金属氧化物在氧化铝生产过程中的应用[J].中国材料科技与设备.2006,2:13-15
    [127]张威,王梅,刘明,等.燃煤高温固硫的机理及固硫影响因素探讨[J].环境保护科学,2008,34(3):4-7
    [128]侯宇.关于影响煤燃烧固硫反应的主要因素及其机理的研究进展[J].节能,2004,263(6):27-35
    [129]Moss G. The fluidized desulfation gasifier[J]. Proceedings of the Second International Conference on Fluidized Bed 1970,2(6):1-7.
    [130]Mulligan T, Pomeroy M, Bannard J E. The mechanism of the sulphation of limestone by sulphur dioxide in the presence of oxygen[J]. Journal Institute of Energy,1989,2:40-47.
    [131]Hsia C, St G R. Diffusion through CaSO4 formed during the reaction of CaO with SO2 and O2[J]. AIChE,1993,39(4):698-700
    [132]戴曦,宾万达.硫化矿焙烧中SO2的控制[J].湖南有色金属,1998,14(2):29-31.
    [133]李雪.湿式氧化处理难降解有机废水的研究:[硕士学位论文].大连:大连工业大学,2008
    [134]Barton H R, Wenge Li. Binuelear Manganese ComPlexesas Catalysts in the Seleetive and Effieient Oxidation of Sulfides to Sulfones[J]. Tetrahedron Letters, 1998,39:7055-705
    [135]余政哲,孙德智,彭永臻,等.化学氧化及高级氧化工艺处理废碱液的研究[J].哈尔滨工业大学学报,2004,36(8):1111-1117

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700