大跨越输电塔-线在线路脱冰作用下的振动
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
输电线路覆冰后的脱冰动力分析十分复杂。以某1000 kV大跨越为工程背景,借助非线性有限元方法建立塔-线耦合模型。为了考虑线路覆冰的弯曲刚度,采用梁单元模拟覆冰,采用单元生死法模拟脱冰,分析塔-线体系对线路脱冰的动力响应。结果表明,线路覆冰后体系的低阶振型基本没有变化,而自振周期变长了;地线脱冰后体系的振动响应衰减较快,而导线脱冰后体系的振动响应衰减较慢。同时,输电塔的位移响应,脱冰50%比脱冰100%时小,而对跨中电线的跳跃幅值,脱冰50%比脱冰100%时大。
Dynamic analysis of transmission lines subjected to ice-shedding loads is very complex. Here, a 1000kV long-span electric transmission tower-line system is taken as the study object, and the tower-line coupling model built with nonlinear finite element method is proposed to calculate the dynamic response of the system subjected to ice shedding. In order to consider the equivalent bending stiffness of ice, a 3-D two-node beam element in parallel to each cable element is used to model accreted ice. In order to simulate the process of ice detachment from wires, the method of "element death" is used to model ice shedding. The result shows that the lower modal shapes of the tower-line system have no change after wires are accreted by ice, but the vibration period enlarged. It is also seen that the system vibration decays more quickly after ice on ground wires is shedded, compared to the vibration induced by ice shedding from conducting wires. In addition, compared two cases of ice-shedding 50% and ice-shedding 100%, the longitudinal displacement responses of the tower in the former case are smaller than those in the latter case; but on the contrary, the vertical displacements of the line at mid span in the former case are bigger than those in the latter case.
引文
[1]刘和云.架空导线覆冰防治的理论与应用[M].北京:中国铁道出版社,2001.
    [2]Jamaledding A,et al.,Weigh-dropping simulation of ice-shedding effects on an overhead transmission line model[C].Proceedings of 7th IWAIS,Canada.1996.
    [3]Jamaledding A.Simulation of ice-shedding on electrical trans-mission line using ADINA[J].Computers&Structures,1993,47(4/5):523—536.
    [4]Kalman T,Farzaneh M,McClure G.Numerical analysis ofthe dynamic effects of shock-load-induced ice shedding on o-verhead ground wires[J].Computers&Structures,2007,85(7-8):375—384.
    [5]McClure G.Numerical modelling of the dynamic response ofice-shedding on electrical transmission lines[J].Atmospher-ic Research,1998,46(1-2):1—11.
    [6]周迪,黄素逸.覆冰导线风动脱冰研究[J].长沙电力学院学报(自然科学版),2002,17(02):54—56.
    [7]梁枢果,邹良浩,赵林.格构式塔架三维动力风荷载的风洞试验研究[J].空气动力学学报,2007,25(03):311—318.
    [8]邓洪洲,朱松晔,陈亦.大跨越输电塔线体系风振控制研究[J].建筑结构学报,2003,24(04):60—65.
    [9]黄斌,唐稼祥.大跨越输电塔结构风振控制[J].噪声与振动控制,1997,17(5):2—5.
    [10]李黎,夏正春,张行.FPS型MTMD在输电塔减震中的应用[J].华中科技大学学报(城市科学版),2007,24(3):4—7.
    [11]Li Hongnan,S W L,Wang Guoxin,et al.Simplified modelsand experimental verification for coupled transmission tower-line system to seismic excitations[J].Journal of Sound andVibration,2005,286(13):569—585.
    [12]朱碧蕾,胡文悌,李春祥.基于有限元分析高压输电塔结构的地震反应[J].地震工程与工程振动,2006,26(05):161—166.
    [13]岳茂光,王东升,李宏男,等.近断层地震动作用下输电塔-导线体系反应分析[J].地震工程与工程振动,2005,25(04):116—125.
    [14]夏正春,李黎.输电塔在线路断线作用下的动力响应[J].振动与冲击,2007,26(11):45—49.
    [15]Pierre McComber,Drues J.Effect of cable twisting on atmos-pheric ice shedding[C].IWAIS,Japan.1990.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心