热力耦合作用下花岗岩流变模型的本构关系研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
热力耦合作用下岩石的微观结构的变化是引起宏观力学变化的主要原因,从热力耦合作用下花岗岩的流变机制研究出发,建立热力耦合作用下花岗岩的流变模型,从而推导流变本构方程是一种可行的方法。通过热力耦合作用下花岗岩的流变机制研究可知:(1)花岗岩是一种由多种成分构成的具有多晶复合介质特点的脆性坚硬岩石,具有很大的非均质性,内部微观结构可分为晶粒、晶粒边界、晶间胶结物及晶间孔隙,这样的组分和结构将决定花岗岩在热力耦合作用下的流变特性。(2)热力耦合作用下花岗岩流变现象主要是热力耦合作用下岩体内晶间胶结物及晶粒内部产生的位错及微破裂过程,即温度产生的热破裂和应力产生损伤破裂的复合破裂过程,微观结构上的变化使得标志着热力耦合作用下宏观力学特性的力学参数成为温度的函数。因此,将岩石现象流变学与物理流变学结合起来,提出热力耦合作用下岩石热黏弹塑性流变元件力学元件,在广义西原模型的基础上建立热力耦合作用下花岗岩流变模型,推导出可描述150MPa及600℃以内花岗岩的流变本构方程,用试验结果验证了其适用性和合理性。热力耦合作用下花岗岩流变模型的本构方程的建立为高温岩体地热开发钻井施工及其稳定性研究提供了依据。
The change of rock microstructure with thermo-mechanical coupling effects is the main cause for transformation of macroscopic mechanics of rock. The rheological mechanism of granite with thermo-mechanical coupling effects;and rheological model of granite are researched. As a result,it is a kind of feasible way for building rheological constitutive equation. According to the research on rheological mechanism of granite with thermo-mechanical coupling effects,it knows:(1) Granite is a sort of brittleness and hardness rock constituted with multi-ingredient;it is provided with polycrystal multiple medium and prodigious anisotropic. Microstructure inside of granite can be divided into grain,boundary of grain,intercrystalline cement and intercrystalline pore; such ingredient and structure determine the rheological properties of granite with thermo-mechanical coupling effects. (2) The rheological phenomenon is induced by dislocation and cracking of grain and cement of grain with thermo-mechanical coupling effects,which is a compound rupture process with thermal cracking by temperature and damage cracking by stress. So macro-mechanical properties of mechanical parameters become a function of temperature. Therefore,the viscoelasto-plastic rheological elements of mechanical model combining the phenomenon of rock rheology and physical rheology are proposed;and the rheological model of granite with thermo-mechanical coupling effects on the basis of generalized Nishihara rheological model is constructed. The evolution model is deduced,which can describe 150 MPa and 600 ℃ granite within the evolution of the constitutive equation;and experimental results show its application and rationality. Granite model of the constitutive equation with thermo-mechanical coupling effects provides a basis for the establishment of high temperature geothermal development drilling rock of stability.
引文
[1]刘雄.岩石流变学概论[M].北京:地质出版社,1994.[LIU Xiong.An introduction to rock rheology[M].Beijing:Geological Publishing House,1994.[in Chinese]]
    [2]HETTEMA M H H.A microstructural analysis of the compaction of claystone aggregate at high temperature[J].International Journal of Rock Mechanics and Mining Sciences,1999,36[1]:57–68.
    [3]江燕,臧绍先.多矿物岩石流变规律的研究进展及存在问题[J].地球物理学进展,2002,17[3]:456–463.[JIANG Yan,ZANG Shaoxian.The research progress and some existing problems of rheological law for multi-mineral rocks[J].Progress in Geophysics,2002,17[3]:456–463.[in Chinese]]
    [4]HANDY M R.The solid-state flow of polymineralic rocks[J].J.Geophys.Res.,1990,95[10]:8647–8661.
    [5]赵永红,李小凡,李杨,等.铁橄榄石高温高压流变性的试验研究[J].岩石学报,2007,23[11]:2927–2932.[ZHAO Yonghong,LI Xiaofan,LI Yang,et al.Experimental study of high temperature and high pressure rheology of fayalite[J].Acta Petrologica Sinica,2007,23[11]:2927–2932.[in Chinese]]
    [6]杨圣奇,徐卫亚,谢守益,等.饱和状态下硬岩三轴流变变形与破裂机制研究[J].岩土工程学报,2006,28[8]:962–969.[YANG Shengqi,XU Weiya,XIE Shouyi,et al.Studies on triaxial rheological deformation and failure mechanism of hard rock in saturated state[J].Chinese Journal of Geotechnical Engineering,2006,28[8]:962–969.[in Chinese]]
    [7]邓广哲,王广地.北山花岗岩热黏弹塑性流变特性分析[J].岩石力学与工程学报,2004,23[增1]:4368–4372.[DENG Guangzhe,WANG Guangdi.Analysis of characteristics of thermo-viscoelasto rheology of Beishan granite[J].Chinese Journal of Rock Mechanics and Engineering,2004,23[Supp.1]:4368–4372.[in Chinese]]
    [8]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型[河海模型]及其应用[J].岩石力学与工程学报,2006,25[3]:433–447.[XU Weiya,YANG Shengqi,CHU Weijiang.Nonlinear viscoelasto-plastic rheological model[Hohai model]of rock and its engineering application[J].Chinese Journal of Rock Mechanics and Engineering,2006,25[3]:433–447.[in Chinese]]
    [9]POIRIER J P.晶体的高温塑性变形[M].关德林译.大连:大连理工大学出版社,1989.[POIRIER J P.Plasticity a haute temperature des solides crystalline[M].Translated by GUAN Delin.Dalian:Dalian University of Technology Press,1989.[in Chinese]]
    [10]陈颙.岩石物理学[M].北京:北京大学出版社,2001.[CHEN Yong.Rock physics[M].Beijing:Peking University Press,2001.[in Chinese]]
    [11]蔚永宁,张德栋.矿物岩石学[M].北京:煤炭工业出版社,2007.[WEI Yongning,ZHANG Dedong.Mineral geognosy[M].Beijing:China Coal Industry Publishing House,2007.[in Chinese]]
    [12]周永胜,何昌荣.地壳主要岩石流变参数及华北地壳流变性质研究[J].地震地质,2003,25[1]:109–122.[ZHOU Yongsheng,HE Changrong.Rheological parameters of crustal rocks and crustal rheology of North China[J].Seismology and Geology,2003,25[1]:109–122.[in Chinese]]
    [13]赵阳升,孟巧荣,康天合,等.显微CT试验技术与花岗岩热破裂特征的细观研究[J].岩石力学与工程学报,2008,27[1]:28–34.[ZHAO Yangsheng,MENG Qiaorong,KANG Tianhe,et al.Micro-CT experimental technology and meso-investigation on thermal fracturing characteristics of granite[J].Chinese Journal of Rock Mechanics and Engineering,2008,27[1]:28–34.[in Chinese]]
    [14]张渊.高温三轴应力条件下岩石热破裂机制与试验研究[博士学位论文][D].徐州:中国矿业大学,2006.[ZHANG Yuan.Studying on the mechanism and experiment of rock at high temperature and triaxial stress conditions[Ph.D.Thesis][D].Xuzhou:China University of Mining and Technology,2006.[in Chinese]]
    [15]万志军,赵阳升,董付科,等.高温及三轴应力下花岗岩体力学特性的试验研究[J].岩石力学与工程学报,2008,27[1]:72–77.[WAN Zhijun,ZHAO Yangsheng,DONG Fuke,et al.Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses[J].Chinese Journal of Rock Mechanics and Engineering,2008,27[1]:72–77.[in Chinese]]
    [16]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.[WANG Zhiyin,LI Yunpeng.Rheology theory and numerical simulation[M].Beijing:Science Press,2008.[in Chinese]]
    [17]李世平,吴振业,贺永年,等.岩石力学简明教程[M].北京:煤炭工业出版社,1996.[LI Shiping,WU Zhenye,HE Yongnian,et al.Brachylogy course to rock mechanics[M].Beijing:China Coal Industry Publishing House,1996.[in Chinese]]
    [18]郤保平,赵阳升,万志军,等.高温静水应力状态花岗岩中钻孔围岩的流变实验研究[J].岩石力学与工程学报,2008,27[8]:1659–1666.[XI Baoping,ZHAO Yangsheng,WAN Zhijun,et al.Rheological experimental investigation on surrounding rock mass of granite under high temperature and hydrostatics stress[J].Chinese Journal of Rock Mechanics and Engineering,2008,27[8]:1659–1666.[in Chinese]]
    [19]高峰,徐小丽,杨效军,等.岩石热黏弹塑性模型研究[J].岩石力学与工程学报,2009,28[1]:74–80.[GAO Feng,XU Xiaoli,YANG Xiaojun,et al.Research on thermo-viscoelasto-plastic model of rock[J].Chinese Journal of Rock Mechanics and Engineering,2009,28[1]:74–80.[in Chinese]]
    [20]左建平,满轲,曹浩,等.热力耦合作用下岩石流变模型的本构研究[J].岩石力学与工程学报,2008,27[增1]:2610–2616.[ZUO Jianping,MAN Ke,CAO Hao,et al.Study on constitutive equation of rock rheological model with thermo-mechanical coupling effects[J].Chinese Journal of Rock Mechanics and Engineering,2008,27[Supp.1]:2610–2616.[in Chinese]]
    [21]王崇革,刘泉声,刘双跃,等.单轴应力下岩石的热–黏弹塑性模型研究[J].岩石力学与工程学报,2002,21[增2]:2341–2344.[WANG Chongge,LIU Quansheng,LIU Shuangyue,et al.Study of thermo-elastoplastic rock model under the condition of uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2002,21[Supp.2]:2341–2344.[in Chinese]]
    [22]蒋昱州,张明鸣,李良权.岩石非线性黏弹塑性蠕变模型研究及其参数识别[J].岩石力学与工程学报,2008,27[4]:832–839.[JIANG Yuzhou,ZHANG Mingming,LI Liangquan.Study on nonlinear viscoelasto-plastic creep model of rock and its parameter identification[J].Chinese Journal of Rock Mechanics and Engineering,2008,27[4]:832–839.[in Chinese]]
    [23]BOUKHAROV G N,CHANDA M W,BOUKHAROV N G.The three processes of brittle crystalline rock creep[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1995,32[4]:325–335.
    [24]孙荣恒.应用数理统计[M].北京:科学出版社,1998.[SUN Rongheng.Mathematical statistics[M].Beijing:Science Press,1998.[in Chinese]]
    [25]陈宝林.最优化理论与方法[M].北京:清华大学出版社,1989.[CHEN Baolin.Theory and method of optimization[M].Beijing:Tsinghua University Press,1989.[in Chinese]]

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心