基于完全气弹模型风洞试验输电塔风荷载识别
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
按照基本缩尺律,设计、制作了输电塔完全气弹模型,并通过大气边界层风洞试验,测试了多种风速、风向条件下输电塔的位移与加速度响应。通过加速度响应功率谱识别出结构的固有频率,并采用Hilbert-Huang变换结合随机减量法识别出包含结构阻尼和气动阻尼的结构总阻尼。利用虚拟激励法建立了由测点位移响应来识别结构顺风向、横风向风荷载的方法。由识别出的风荷载谱曲线,利用非线性最小二乘法拟合得到输电塔顺风向、横风向风荷载经验公式。研究结果表明:风洞试验设计、制作的输电塔气弹模型,测试得到的模型第1阶自振频率与有限元计算结果吻合较好;横风向荷载谱形态与顺风向的相比有较大的区别,其能量分布在一个更宽的频带上,其峰值频率是顺风向的3~4倍。
In light of basic scale laws,a full aero-elastic model of a transmission tower was designed and produced.Displacements and accelerations response of the aero-elastic model of the transmission tower under various wind speeds and various wind directions were investigated through boundary layer wind tunnel tests.The structure natural frequencies were identified by the acceleration power spectrum method and the structural total mode damping ratios including structure damping ratios and aerodynamic damping ratios were acquired by Hilbert-Huang transform method and random decrement technique.A method was introduced to identify dynamic wind load spectra in the along-wind and across-wind directions from displacement spectra based on pseudo-excitation method.As wind load spectrum curves of the transmission tower had been identified,the experiential formulas of the dynamic wind load models of the tower in along-wind and across-wind directions were established by nonlinear least squares regression.Analysis results show the full aero-elastic model of the tower produced in the test is very fine and its first order natural frequency is much closed to the one calculated by FEM.Comparison between across-wind and along-wind force spectra indicate that the energy of across-wind force spectra is distributed on a much wider frequency domain and their dominant frequencies are 3 to 4 times of those in along-wind direction.
引文
[1]Loredo-Souza A M,Davenport A G.A novel approachfor wind tunnel modelling of transmission lines[J].Journal of Wind Engineering and IndustrialAerodynamic,2001,89(11-12):1017-1029.
    [2]Holmes J D.Along-wind responses of lattice tower:Part I-Derivation of expressions for gust response factors[J].Engineering Structures,1994,16(4):287-292.
    [3]Holmes J D.Along-wind responses of lattice tower:PartⅡ:Aerodynamic damping and deflections[J].Engineering Structures,1996,18(7):483-488.
    [4]Holmes J D.Along-wind responses of lattice tower:PartⅢ:Effective load distributions[J].EngineeringStructures,1996,18(7):489-494.
    [5]Yasui H,Marukawa H,Momomura Y.Analytic studyon wind-induced vibration of power transmission towers[J].Journal of Wind Engineering and IndustrialAerodynamics,1999,83(1-3):431-441.
    [6]Battista R C,Rodrigues R S,Pfeil M S.Dynamicbehavior and stability of transmission line towers underwind forces[J].Journal of Wind Engineering andIndustrial Aerodynamics,2003,91(8):1051-1067.
    [7]Ozono S,Maeda J,Makino M.Characteristics of in-plane free vibration of transmission line systems[J].Engineering Structures,1988,10(4):272-280.
    [8]Ozono S,Maeda J.In-plane dynamic interactionbetween a tower and conductors[J].EngineeringStructures,1992,14(4):210-216.
    [9]Zou Lianghao,Liang Shuguo,Li Q S,et al.Investigation of 3-D dynamic wind loads on latticetowers[J].Wind and Structures,2008,11(4):323-340.
    [10]梁枢果,邹良浩,赵林,等.格构式塔架动力风荷载解析模型[J].同济大学学报:自然科学版,2008,36(2):166-171.(Liang Shuguo,Zou Lianghao,ZhaoLin,et al.Analytical model of dynamic wind loads onlattice towers[J].Journal of Tongji University:NaturalScience,2008,36(2):166-171.(in Chinese))
    [11]梁枢果,朱继华,王力争.大跨越输电塔-线体系动力特性分析[J].地震工程与工程振动,2003,23(6):63-69.(Liang Shuguo,Zhu Jihua,WangLizheng.Analysis of dynamic characters of electricaltransmission tower-line system with a big span[J].Earthquake Engineering and Engineering Vibration,2003,23(6):63-69.(in Chinese))
    [12]梁波,徐建良.架空输电铁塔动力风响应的数值模拟[J].同济大学学报:自然科学版,2002,30(5):583-587.(Liang Bo,Xu Jianliang.Numericalsimulation of along-wind response of transmission towers[J].Journal of Tongji University:Natural Science,2002,30(5):583-587.(in Chinese))
    [13]刘群,杨进春,周粼波.高压架空输电线路钢结构塔架与导线风致耦合振动现象研究[J].中国电力,1997,30(9):50-52.(Liu Qun,Yang Jinchun,ZhouLinbo.Research of coupling vibration between steeltower frame and conductor for HV overhead lines[J].Electric Power,1997,30(9):50-52.(in Chinese))
    [14]梁枢果.输电塔-导线体系风振响应计算与气弹模型风洞试验研究报告[R].上海:同济大学土木工程防灾国家重点实验室,2002.
    [15]楼文娟,孙炳楠,叶尹.高耸塔架横风向动力风效应[J].土木工程学报,1999,32(6):67-71.(LouWenjuan,Sun Bingnan,Ye Yin.Across-wind dynamicresponse of latticed towers[J].China Civil EngineeringJournal,1999,32(6):67-71.(in Chinese))
    [16]邓洪洲,朱松晔,陈晓明,等.大跨越输电塔线体系气弹模型风洞试验[J].同济大学学报:自然科学版,2003,31(2):132-137.(Deng Hongzhou,ZhuSongye,Chen Xiaoming,et al.Wind tunnelinvestigation on model of long span transmission linesystem[J].Journal of Tongji University:NaturalScience,2003,31(2):132-137.(in Chinese))
    [17]邹良浩.输电塔-线体系三维动力特性与风振响应的理论与试验研究[R].武汉:武汉大学土木建筑工程学院,2009.
    [18]张相庭.结构风工程理论.规范.实践[M].北京:中国建筑工业出版社,2006.
    [19]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [20]Vickery B J,Clark A W.Lift or across-wind responseof tapered stacks[J].Journal of the StructuralDivision,ASCE,1972,ST1:1-20.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心