钢-连续纤维复合筋(SFCB)力学性能试验研究与理论分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文对工业化制备的钢-连续纤维复合筋(SFCB)制品进行了单向拉伸和反复拉伸试验,观察其破坏过程和破坏特征,测定其初期刚度、二次刚度、屈服强度、极限强度、卸载刚度、残余变形。试验结果表明,SFCB的荷载-应变关系曲线在纤维断裂前呈现出明显的双折线,钢筋屈服后SFCB具有稳定的二次刚度、小的残余变形和良好的可恢复性能。根据材料的复合法则推导出了SFCB单调加载下应力-应变关系的理论计算模型,针对根据现有钢筋和纤维材料恢复力模型直接采用复合法则得到的SFCB反复拉伸的理论模型和试验结果误差较大的情况,基于SFCB反复拉伸的荷载-应变试验曲线特征,经过统计分析,构建了SFCB反复拉伸下应力-应变关系恢复力模型,该模型良好地揭示了SFCB在反复加载下其卸载模量随塑性发展而逐渐退化的规律,与试验数据进行比较,发现均吻合较好,证明了可以通过理论计算对SFCB的力学性能进行预测和设计。
Uniaxial and cyclic tensile tests of steel-FRB (fiber reinforced polymer) composite bar (SFCB) products were conducted,with the destruction and damage characteristics observed and the initial stiffness,post-yielding stiffness,yield strength,ultimate strength,unloading stiffness,and residual strain of the specimens measured. Test results showed that the load-strain curve of SFCB was bilinear before fiber fracture and exhibited stable post-yielding stiffness,small residual strain and good recoverability after the reinforcement yielded. Since the theoretical model for the stress-strain curve of SFCB under uniaxial load derived from the mixing rule involves large error for cyclic test data,a Restoring Force Model for the stress-strain curve of SFCB under cyclic load was constructed by statistical analysis of the characteristics of the stress-strain test curve under cyclic tension. The Restoring Force Model could thoroughly display the pattern of the unloading modulus of SFCB degradation under cyclic tensile and the predicted results were in good agreement with experimental data,which proved that the performance of SFCB could be predicted and designed by the proposed model.
引文
[1]Christopoulos C,Pampanin S.Towards performance-based seismic design of MDOF structures with explicit consideration of residual deformations[J].Journal of Earthquake Technology,2004,41(1):53-73
    [2]Christopoulos C,Pampanin S,Priestley M J N.Performance-based seismic response of frame structures including residual deformations,Part I:single-degree of freedom systems[J].Journal of Earthquake Engineering,2003,7(1):97-118
    [3]Kawashima K,MacRae G A,Hoshikuma J,et al.Residual displacement response spectrum[J].Journal of Structural Engineering,ASCE,1998,124(5):523-530
    [4]叶列平,Asad UQ,马千里,等.高强钢筋对框架结构抗震破坏机制和性能控制的研究[J].工程抗震与加固改造,2006,28(1):18-24(Ye Lieping,Asad U Q,Ma Qianli,et al.Study on failure mechanism and seismic performance of passive control RC frame against earthquake[J].Earthquake Resistant Engineering and Retrofitting,2006,28(1):18-24(in Chinese))
    [5]马千里,程光煜,叶列平,等.结构屈服后刚度对地震响应离散性影响的研究[J].防灾减灾工程学报,2007,27(S):158-162(Ma Qianli,Lu Xinzheng,Ye Lieping,et al.Influence of the post-yield stiffness of structure to the variance of seismic response[J].Journal of Disaster Prevention and Mitigation Engineering,2007,27(S):158-162(in Chinese))
    [6]Sakai J,Mahin S A.Analytical investigations of new methods for reducing residual displacements of reinforced concrete bridge columns[R].PEER2004/02,California:Pacific Earthquake Engineering Reseatch Center,2004
    [7]Iemura H,Takahashi Y,Sogabe N.The load-displacement relationship of RC pier with splitting bond high strength bars[J].Journal of JSCE,2004,65(774):59-72(in Japanese)
    [8]Iemura H,Takahashi Y,Sogabe N.Innovation of high-perfromence RC structure with unbonded bars for strong earthquankes[J].Journal of JSCE,2002,60(710):283-296(in Japanese)
    [9]谢旭,布占宇.应用碳纤维筋控制桥墩地震损伤方法初探[J].浙江大学学报(工学版),2005,39(10):1589-1595(Xie Xu,Bu Zhanyu.Elementary study on usefulness of carbon fiber for controlling bridge pier seismic damage[J].Journal of Zhejiang University(Engineering Science),2005,39(10):1589-1595(in Chinese))
    [10]吴智深,吴刚,吕志涛.钢-连续纤维复合筋增强混凝土抗震结构.中国,CN1936206[P].2006
    [11]罗云标,吴刚,吴智深,等.钢-连续纤维复合筋(SFCB)的生产制备研究[J].工程抗震与加固改造,2009,31(1):28-34(Luo Yunbiao,Wu Gang,Wu Zhishen,et al.Study on fabrication technique of steel fiber composite bar(SFCB)[J].Earthquake Resistant Engineering and Retrofitting,2009,31(1):28-34(in Chinese))
    [12]罗云标.钢-连续纤维复合筋及其增强混凝土结构性能研究[D].南京:东南大学,2008(Luo Yunbiao.Performance study on steel fiber composite bars and its strengthened concrete structure[D].Nanjing:Southeast University,2008(in Chinese))
    [13]吴刚,罗云标,吴智深,等.钢-连续纤维复合筋(SFCB)单向拉伸力学性能试验研究[J].工程抗震与加固改造,2009,31(1):1-7(Wu Gang,Luo Yunbiao,Wu Zhishen,et al.Experimental study on mechanics properties of steel fiber composite bar(SFCB)under uniaxial load[J].Earthquake Resistant Engineering and Retrofitting,2009,31(1):1-7(in Chinese))
    [14]郑百林,李伟,张伟伟,等.增强混凝土中FRP包覆筋研究II:力学性能测试[J].复合材料学报,2004,21(3):79-83(Zheng Bailin,Li Wei,Zhang Weiwei,et al.Mechnics behavior of FRP wrapped rebar reinforced concrete II:mechnic tests[J].Acta Materiae Compositae Sinica,2004,21(3):79-83(in Chinese))
    [15]张志春.结构新型热固性FRP复合筋及其性能[D].哈尔滨:哈尔滨工业大学,2008(Zhang Zhichun.Thermoset FRP composited rebars and their perfprmance for civil infrastructures[D].Harbin:Harbin Institute of Technology,2008(in Chinese))
    [16]罗云标,吴刚,吴智深,等.钢-连续纤维复合筋(SFCB)增强混凝土柱抗震性能初探[J].工程抗震与加固改造,2009,31(1):14-20(Luo Yunbiao,Wu Gang,Wu Zhishen,et al.Numerical study on seismic performance of steel fiber composite bar(SFCB)reinforced concrete column[J].Earthquake Resistant Engineering and Retrofitting,2009,31(1):14-20(in Chinese))
    [17]Restrepo-Posada J I,Dodd L L,Park R,et al.Variables affecting cyclic behavior of reinforcing steel[J].Journal of Structural Engineering,ASCE,1994,120(11):3178-3196

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心