塔线系统脱冰跳跃动力响应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
采用有限元软件ANSYS建立铁塔-导线-地线-绝缘子的三维塔线系统有限元模型,考虑塔线耦合效应、脱冰相位置及数量、冰厚、档距和高差等影响因素,完成了不同工况下的塔线系统脱冰跳跃动力分析,确定了导线跳跃高度、挂点荷载及其动力放大系数和铁塔杆件内力的变化规律。对于2008年冰灾500 kV实际线路段的脱冰跳跃动力分析表明,在设计冰厚工况下,脱冰量较大时,导线脱冰跳跃会导致塔头杆件应力超限而发生破坏。对于上相脱冰情况,在脱冰档安装三角形相间间隔棒后,脱冰档跳跃高度和挂点不平衡张力明显降低,设计冰厚下铁塔处于安全状态。为防治塔线系统脱冰跳跃事故,应在事故多发段采用相间间隔棒,并根据脱冰跳跃挂点荷载计算值对铁塔塔头薄弱杆件进行适当加强。
A three dimensional finite element model of tower-conductor-ground wire-insulator system was established in ANSYS,and the dynamic responses of ice shedding under different cases were analyzed for transmission tower-line system.Many factors were considered in the ice shedding simulating analysis,which includes tower-line coupled effect,the quantity and location of conductor phases,thickness of the accreted ice,length of span as well as elevation difference.Influences of all the factors on the dynamic responses of jumping heights,loads at the end of insulator and the forces of transmission tower were mainly studied.Ice shedding simulating analysis of an actual 500 kV transmission line section which happened ice disaster in 2008 was completed,and the results show that stress ratios of the members at tower head under design ice thickness will exceed the limited values when the amount of ice shedding is much larger.For the ice shedding at the top phase conductors,the jumping height and unbalanced tension at the end of insulator can be reduced obviously by applying triangular phase to phase spacers,and the tower is in safe state under design ice thickness.As to prevent ice shedding accidents,phase to phase spacers should be used,and the weak members at tower head should be strengthened according to the calculated load values at the end of insulators.
引文
[1]刘和云.架空导线覆冰防冰的理论与应用[M].北京:中国铁道出版社,2001.
    [2]中国电力科学研究院.塔线系统防脱冰跳跃事故措施研究[R].北京:国家电网公司,2009.
    [3]国网电力科学研究院.1 000 kV交流特高压同塔双回输电线路导线脱冰跳跃研究[R].北京:国家电网公司,2008.
    [4]侯镭,王黎明,朱普轩,等.特高压线路覆冰脱落跳跃的动力计算[J].中国电机工程学报,2007,28(6):1—6.
    [5]Janez Jake.Numerical modeling of snow-shedding ef-fects on a 110kV overhead power line in Slovenia[A].Proceedings of the Eleventh International Offshoreand Polar Engineering Conference[C].2001:690—694.
    [6]G McClure,M Lapointe.Modeling the structural dy-namic response of overhead transmission lines[J].Computers&Structures,2003,81:825—834.
    [7]Roshan Fekr M,McClure G.Numerical analysis ofthe dynamic response of ice shedding on electricaltransmission lines[J].Atmospheric Research,1998,46:1—11.
    [8]Kalman T,Farzaneh M,McClure G.Numerical anal-ysis of the dynamic effects of shock-load-induced iceshedding on overhead ground wires[J].Computers&Structures,2007,85:375—384.
    [9]杨风利,杨靖波,韩军科,等.煤矿采空区基础变形特高压输电铁塔的承载力计算[J].中国电机工程学报,2008,28(34):12—20.
    [10]李宏男,胡大柱,黄连壮.地震作用下输电塔体系塑性极限状态分析[J].中国电机工程学报,2006,26(24):192—199.
    [11]田利,李宏男,黄连壮.多点激励下输电塔-线体系的侧向地震反应分析[J].中国电机工程学报,2008,28(16):108—114.
    [12]胡大柱,李宏男.格构式输电铁塔组成杆件对极限承载力影响的研究[J].世界地震工程,2004,20(3):50—55.
    [13]李宏男,任月明,白海峰.输电塔体系风雨激励的动力分析模型[J].中国电机工程学报,2007,27(30):43—48.
    [14]柳国环,李宏男.高压输电塔-线体系风致动力响应分析与优化控制[J].中国电机工程学报,2008,28(19):131—137.
    [15]陆佳政,刘纯,陈红冬,等.500 kV输电塔线覆冰有限元计算[J].高电压技术,2007,33(10):167—169.
    [16]尹鹏,李黎,张行.输电线路脱冰跳跃反应控制研究[J].电网与水力发展进展,2008,24(3):1—7.
    [17]国家电力公司东北电力设计院.电力工程高压送电线路设计手册[M].北京:中国电力出版社,2007.
    [18]陈仕良,曹枚根.有限元法在架空线路导地线找形分析中的应用[J].江西电力,2007,31(6):7—10.
    [19]国网北京电力建设研究院.输电线路导线与铁塔耦合振动研究[R].北京:国家电网公司,2007.
    [20]王黎明,范钦珊,薛家麒.相间合成绝缘间隔棒后屈曲形态研究[J].清华大学学报(自然科学版),1996,36(9):70—76.
    [21]陈在铁.紧凑型线路相间绝缘间隔棒后屈曲性态非线性研究[J].苏州大学学报(自然科学版),1999,15(3):60—67.
    [22]朱宽军,刘彬,刘超群,等.特高压输电线路防舞动研究[J].中国电机工程学报,2008,28(34):12—20.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心