顶板岩层破断诱发矿震的频谱特征
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
揭示顶板破断过程中的微震活动规律,采用频谱演变来评价顶板动力危害的强度,并进一步监测顶板的破断。采用SOS微震监测系统,针对坚硬以及软弱顶板破断来压的过程进行了实测,取得如下结论:(1)顶板破断之前,低频段微震幅值逐渐增加,来压时信号的幅值达到最大值,之后产生突降。同时微震前兆信号主频与来压强度呈负相关。(2)软弱顶板破断之前,微震信号主频开始向低频段移动,但前兆主频均大于20Hz,来压之后主频又开始向高频段移动。(3)坚硬顶板破断过程极其短暂,主震信号幅值较高,但主频小于5Hz,来压前后低频微震信号的幅值较低,前兆效应不明显。利用上述规律,可以对顶板破断的过程及其强度进行有效的评价和预测。
To evaluate and monitor the danger and intensity of roof dynamic fracture by the evolution rules of frequency-spectrum,the research on microseismic(MS) activity rules in the process of roof fracture is presented. With SOS MS monitoring system,the hard and weak roof fracture processes are measured in field. The achieved results are as follows. (1) Before the roof fracture,the amplitude of MS signals in the low-frequency band increases gradually;then it reaches the maximum value at roof fracture and pressurization;after that,the amplitude begins to decrease quickly. Simultaneously,the correlation between precursory signal main frequency and the pressurization intensity is negative. (2) Before the weak roof fracture,the main frequency of MS signals begins to move to the low-frequency band,but the main frequency of precursory signals is larger than 20 Hz. After roof pressurization,the main frequency will move to the high-frequency band. (3) The process of hard roof fracture is transient,and the amplitude of main shock signals is higher,but the main frequency is lower than 5 Hz. Amplitude in the low-frequency band before and after fracturing is lower,and the precursory effect is not obvious. With above rules,the process and intensity of roof fracture and pressurization can be evaluated and predicted effectively.
引文
[1]刘杰,高润平,崔俊峰.微地震监测在综放开采技术中的应用[J].煤矿安全,2008,39(8):60–62.(LIU Jie,GAO Runping,CUI Junfeng.Research on microseism monitoring technology in fully-mechanized mining[J].Mining Safety,2008,39(8):60–62.(in Chinese))
    [2]李世愚,唐林波,刘建新,等.地震前低频事件的试验研究[J].地震地磁观测与研究,2002,23(4):1–7.(LI Shiyu,TANG Linbo,LIU Jianxin,et al.Experimental investigation on precursory low-frequency events before strong earthquakes[J].Seismological and Geomagnetic Observation and Research,2002,23(4):1–7.(in Chinese))
    [3]姜福兴,杨淑华,成云海,等.煤矿冲击地压的微地震监测研究[J].地球物理学报,2006,49(5):1511–1516.(JIANG Fuxing,YANG Shuhua,CHENG Yunhai,et al.A study of microseismic monitoring of rock burst in coal mine[J].Chinese Journal of Geophysics,2006,49(5):1511–1516.(in Chinese))
    [4]姜福兴,XUN L,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报,2003,25(1):23–25.(JIANG Fuxing,XUN L,YANG Shuhua.Study of microseismic monitoring for spatial structure of overlying strata and mining pressure field in longwall face[J].Chinese Journal of Geotechnical Engineering,2003,25(1):23–25.(in Chinese))
    [5]成云海,姜福兴,张兴民,等.微震监测揭示的C型采场空间结构及应力场[J].岩石力学与工程学报,2007,26(1):102–107.(CHENG Yunhai,JIANG Fuxing,ZHANG Xingmin,et al.C-shaped strata spatial structure and stress field in longwall face monitored bymicroseismic monitoring[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(1):102–107.(in Chinese))
    [6]成云海,姜福兴,程久龙,等.关键层运动诱发矿震的微震探测初步研究[J].煤炭学报,2006,31(3):273–277.(CHENG Yunhai,JIANG Fuxing,CHENG Jiulong,et al.Primary study of microseismic locating and monitoring technology of shock bump caused by key stratum movement[J].Journal of China Coal Society,2006,31(3):273–277.(in Chinese))
    [7]秦四清.岩石断裂过程的声发射试验研究[J].地质灾害与环境保护,1994,5(3):48–55.(QIN Siqing.Experiment research on acoustic emission in the process of rock fracturing[J].Geological Hazards and Environment Preservation,1994,5(3):48–55.(in Chinese))
    [8]许昭永,王彬,胡毅力,等.试论岩石破裂和破坏的差异对地震模拟及前兆研究的影响[J].地球物理学报,2009,52(3):712–719.(XU Zhaoyong,WANG Bin,HU Yili,et al.A discussion on influence of difference between rock fracture and failure on earthquake simulation and precursor studies[J].Chinese Journal of Geophysics,2009,52(3):712–719.(in Chinese))
    [9]李世愚,腾春凯,卢振业,等.地震破裂的集结及其前兆意义[J].地震学报,2000,22(2):201–209.(LI Shiyu,TENG Chunkai,LU Zhenye,et al.Nucleation of earthquake fracture and its precursor[J].Acta Seismologica Sinica,2000,22(2):201–209.(in Chinese))
    [10]李世愚,腾春凯,卢振业,等.典型构造微破裂集结的试验研究[J].地震学报,2000,22(3):278–287.(LI Shiyu,TENG Chunkai,LU Zhenye,et al.The experimental investigation of microcracks nucleation in typical tectonics[J].Acta Seismologica Sinica,2000,22(3):278–287.(in Chinese))
    [11]SHEN B,KING A,GUO H.Displacement,stress and seismicity in roadway roofs during mining-induced failure[J].International Journal of Rock Mechanics and Mining Sciences,2007,45(5):672–688.
    [12]NAPIER J A L,PEIRCE A P.The use of a multipole expansion technique to analyse large scale fracture processes and seismic recurrence effects in deep level mines[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(3–4):216–230.
    [13]FRID V,VOZOFF K.Electromagnetic radiation induced by mining rock failure[J].International Journal of Coal and Geology,2005,64(1–2):57–65.
    [14]BRADY B T,LEIGHTON F W.Seismicity anomaly prior to a moderate rock burst:a case study[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1977,14(3):127–132.
    [15]BLAKE W,LEIGHTON F,DUVALL W I.Microseismic techniques for monitoring the behavior of rock structures[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1975,12(4):69.
    [16]曹安业,窦林名,李志华,等.高应力区微震监测信号特征分析[J].采矿与安全工程学报,2007,24(2):146–149,154.(CAO Anye,DOU Linming,LI Zhihua,et al.Characteristic of microseismic monitoring signal in high stressed zone[J].Journal of Mining and Safety Engineering,2007,24(2):146–149,154.(in Chinese))
    [17]SILVA S H D,DAY S J,FONSECA J F B D.Fogo Volcano,Cape Verde Islands:seismicity-derived constraints on the mechanism of the1995eruption[J].Journal of Volcanology and Geothermal Research,1999,94(1–4):219–231.
    [18]ZHAO J,ZHAO X B,CAI J G.A further study of P-wave attenuation across parallel fractures with linear deformational behaviour[J].International Journal of Rock Mechanics and Mining Sciences,2006,43(5):776–788.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心