新型全钢防屈曲支撑的拟静力滞回性能试验
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为减少传统防屈曲支撑(BRB)的十字形支撑内芯在焊接后所产生的残余弯曲变形,提出一种新型全角钢式防屈曲支撑(ABRB)。该支撑的内芯由4个等边角钢通过屈服段无焊接技术组合而成,约束构件则由两个等边角钢沿纵向焊接组合而成。对4个ABRB试件进行拟静力滞回性能试验,重点考察支撑边界条件,支撑端部转动约束构造、内芯外伸段构造以及加力长度等因素对其滞回性能的影响。试验前首先对试件内芯的初始弯曲进行测量,结果表明,绝大多数试件内芯屈服段的相对初始弯曲均有效控制在1/1000以内。拟静力试验结果表明,当支撑端部边界条件为固接时,ABRB的延性及耗能发展最为充分;当支撑两端为铰接且支撑端部无转动约束时则较容易发生内芯外伸段的局部压弯破坏,且当加力长度增加时,局部压弯破坏则越早发生,但该破坏模式可通过在铰接ABRB两端设置转动约束构件的构造予以避免。对试件的抗震性能分析表明,构造合理的ABRB表现出较好的延性以及十分稳定的累积滞回耗能特性,因此ABRB可作为有效的耗能减震装置应用于工程结构中。最后提出进一步改进的建议以及有待深入研究的问题,为此类支撑性能的进一步完善奠定基础。
To minimize the residual welding deformation in the steel core of cruciform cross-section of conventional buckling-restrained braces(BRBs),a novel type of all-steel BRB,called Angle BRB(ABRB),has been developed.The steel core of ABRB consists of four angle steels of equal sides to form a non-welding cruciform yielding cross-section,and the outer restraint is composed of two angle steels of equal sides welded longitudinally to form a square hollow cross-section.Uniaxial quasi-static cyclic tests for four ABRB specimens were carried out to investigate the hysteretic behavior,in which the effects of boundary condition,construction of rotation restraint at the brace end,construction at the core projection,loading length,etc.are considered.The relative initial geometric imperfection in the yielding segment of the steel core specimens was measured before the tests,which shows that such imperfection can be well controlled within the limit of 1/1000.The test results indicate that the ABRB specimens with rigid connection exhibit better hysteretic performance than other specimens.The local compression-flexure failure mode is inclined to occur at the core projection for the ABRB specimens with pin connections and without rotation restraint at the brace end.The local compression-flexure failure occurs earlier when the loading length increases,which can be safely prevented by setting rotation restraint at the brace end.The seismic behavior of the ABRB specimens are analyzed and it is revealed that the ABRB specimens with rational constructions exhibit plump and stable hysteretic performance before failure,indicating good ductility and satisfactory cumulative hysteretic energy dissipation capacity,which shows that ABRB can serve as an effective passive energy dissipation device for structures.
引文
[1]Ma Ning,Zhao Junxian,Wu Bin,et al.Full scalesubassemblage test of all-steel buckling restrained brace[C]//Proceeding of the 10th International Symposium onStructural Engineering for Young Experts.Beijing:Science Press,2008:949-954
    [2]孙飞飞,刘猛,李国强,等.国产TJ-Ⅰ型屈曲约束支撑的性能研究[J].河北工程大学学报:自然科学版,2009,26(1):5-9(Sun Feifei,Liu Meng,Li Guoqiang,et al.Improvement and experimental study of domestic TJ-Ⅰtype buckling-restrained brace[J].Journal of HebeiUniversity of Engineering:Natural Science Edition,2009,26(1):5-9(in Chinese))
    [3]周云,钱洪涛,褚洪民,等.新型防屈曲耗能支撑设计原理与性能研究[J].土木工程学报,2009,42(4):64-71(Zhou Yun,Qian Hongtao,Chu Hongmin,et al.Astudy on the design principle and performance of a new typeof buckling-restraint brace[J].China Civil EngineeringJournal,2009,42(4):64-71(in Chinese))
    [4]Koetaka Y,Tsujita O,Narihara H.The experimental studyon buckling restrained braces:Part 2[C]//Summaries ofTechnical Papers of Annual Meeting.Japan:ArchitecturalInstitute of Japan,2000:913-914(in Japanese)
    [5]Murase Y,Morishita K,Inoue K,et al.Structural designmethod of the long brace with axial hysteresis dampers atboth ends:Part 1[J].Journal of Structural andConstruction Engineering,2004,578(4):131-138(inJapanese)
    [6]马宁,吴斌,赵俊贤,等.全钢防屈曲支撑抗震性能足尺构件试验[C]//第17届全国结构工程学术会议论文集(第Ⅲ册).武汉:工程力学,2008:118-125(MaNing,Wu Bin,Zhao Junxian,et al.Full scale uniaxialtests on earthquake resistant behavior of all-steel buckling-restrained brace[C]//Proceeding of the 17th NationalConference on Structural Engineering(No.Ⅲ).Wuhan:Engineering Mechanics,2008:118-125(in Chinese))
    [7]Nagao T,Takahashi S.A study on the elasto-plasticbehavior of unbonded composite bracing:Part 1[J].Journal of Structural and Construction Engineering,1990,415(9):105-115(in Japanese)
    [8]李妍,吴斌,王倩颖,等.防屈曲钢支撑阻尼器的试验研究[J].土木工程学报,2006,39(7):9-14(Li Yan,Wu Bin,Wang Qianying,et al.An experimental study ofanti-buckling steel damping-braces[J].China CivilEngineering Journal,2006,39(7):9-14(in Chinese))
    [9]赵俊贤,丁玉坤,张耀春.单斜式无粘结内藏钢板支撑剪力墙滞回性能的试验研究[J].哈尔滨工业大学学报,2007,39(增2):343-347(Zhao Junxian,DingYukun,Zhang Yaochun.Experimental study on hystereticperformance of diagonal-shaped unbonded steel plate braceencased in reinforced concrete panel[J].Journal of HarbinInstitute of Technology,2007,39(S2):343-347(inChinese))
    [10]Iwata M,Murai M.Buckling-restrained brace using steelmortar planks:performance evaluation as a hystereticdamper[J].Earthquake Engineering and StructuralDynamics,2006,35(14):1807-1826
    [11]赵俊贤,吴斌.防屈曲支撑的工作机理及稳定性设计方法[J].地震工程与工程振动,2009,29(3):131-139(Zhao Junxian,Wu Bin.Working mechanism and stabilitydesign methods of buckling-restrained braces[J].Journalof Earthquake Engineering and Engineering Vibration,2009,29(3):131-139(in Chinese))
    [12]ANSI/AISC 341-05 Seismic provisions for structural steelbuildings[S].Chicago,Illinois:American Institute ofSteel Construction,2005

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心