基于Hoek-Brown强度准则的高应力判据理论分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
如何评价工程岩体中赋存的应力状态一直是工程设计人员所要面对的基本问题之一。应力状态评价需综合考虑岩体强度和岩体中赋存的应力两个要素,其评价结果反映了地下结构围岩在二次应力场作用下满足岩体强度准则时可能的变形破坏响应。通过对前人研究成果的分析,总结出高应力作用下地下结构的基本变形破坏规律。利用Hoek-Brown强度准则分析岩体强度与岩体质量分级参数和岩石单轴抗压强度的关系,得出多数情况下岩体强度与岩石单轴抗压强度的比值都小于0.5,进一步确认了利用岩体强度和应力之比作为高应力判据的可靠性。通过综合分析Hoek-Brown强度准则和岩石剪切破坏的摩擦理论,推导出在不同摩擦系数下岩体强度与岩体中赋存的最大主应力在破坏时的基本关系。根据这一基本关系,再结合地下空间二次应力场的调整规律,从岩石力学的角度证明了新的高应力判据。将该高应力判据应用于国内外的各种已建成的工程实例,发现评价效果良好。最后给出了应用该高应力判据进行应力状态评价的一般步骤,同时也指出所需要注意的问题。
How to evaluate the stress state in an engineering rock mass is one of the most fundamental problems that all the underground structure designers have to be faced with.Evaluating the stress state needs considering both sides of this problem,rock mass strength and stresses in the rock mass.The evaluation results reflect the deformation and failure responses of surrounding rock masses under the actions of secondary stresses when they observe a rock mass strength criterion.Most research findings in the past on high stress criterion are summarized to infer a general deformation and failure law for underground structures under the impact of high stresses.By analyzing the relation between the rock mass strength and the rock mass rating parameters and the uniaxial compressive strength(UCS) of rock specimens according to the Hoek-Brown criterion,a conclusion is come to that the ratio of the rock mass strength to the UCS should be less than 0.5 in most situations.With respect to the new high stress criterion put forward by the authors in 2009,basic relationships at different frictional coefficients between the rock mass strength and the maximum principal stresses present in the rock mass are obtained by analyzing the Hoek-Brown strength criterion and rock friction theory comprehensively;based on this relationship and the redistribution law of secondary stress field around an underground opening,the new high stress evaluation criterion is verified from the aspect of rock mechanics.The application of this criterion to some engineering practices all over the world proves that this new high stress evaluation criterion works very well.Finally,the authors put forward the general rules and procedures for how to use this new criterion,and some concerns that should be careful of.
引文
[1]王成虎,郭啟良,丁立丰,等.工程区高地应力判据研究及实例分析[J].岩土力学,2009,30(8):2359-2364.WANG Cheng-hu,GUO Qi-liang,DING Li-feng,et al.High in-situ stress criteria for engineering area and a case analysis[J].Rock and Soil Mechanics,2009,30(8):2359-2364.
    [2]AMADEI B,STEPHANSSON O.Rock stress and its measurement[M].London:Chapman&Hall,1997.
    [3]HAIMSON B C.The effect of lithology,inhomogeneity,topography,and faults,on in situ stress measurements by hydraulic fracturing,and the importance of correct data interpretation and independent evidence in support of results[C]//Rock Stress and Earthquakes.London:Taylor&Francis Group,2010.
    [4]刘佑荣,唐辉明.岩体力学[M].武汉:中国地质大学出版社,1999.
    [5]MARTIN C D,KAISER P K,CHISTIANSSON R.Stress,instability and design of underground excavations[J].International Journal of Rock Mechanics and Mining Sciences,2003,40(7-8):1027-1047.
    [6]SHEOREY P R.A theory for in-situ stress in isotropic and transversely isotropic rock[J].International Journal of.Rock Mechanics and Mining Sciences and Geo-mechanics Abstracts,1994,31(1):23-34.
    [7]孙广忠.工程地质与地质工程[M].北京:地震出版社,1993.
    [8]徐林生,唐伯明,慕长春,等.高地应力与岩爆有关问题的研究现状[J].公路交通技术,2002,(4):48-51.XU Lin-sheng,TANG Bo-ming,MU Chang-chun,et al.Review of high stresses and rock burst problems[J].Technology of Highway and Transport,2002,(4):48-51.
    [9]MARTIN C D,KAISER P K,MCCREATH D R.Hoek–Brown parameters for predicting the depth of brittle failure around tunnels[J].Canadian Geotechnical Journal,1999,36(1):136-151.
    [10]HOEK E,KAISER P K,BAWDEN W F.Support of underground excavations in hard rock[M].Rotterdam:Balkema A A,1995.
    [11]宋建波,张倬元,于远忠,等.岩体经验强度准则及其在地质工程中的应用[M].北京:地质出版社,2002.
    [12]HOEK E,BROWN E T.Underground excavations in rock[M].Hertford:Austin&Sons Ltd.,1980.
    [13]HOEK E,BROWN E T.Empirical strength criterion for rock masses[J].Geotechnical Engineering Division,American Society Civil Engineering,1980,106(GT9):1013-1035.
    [14]HOEK E,MARINOS P,BENISSI M.Applicability of the geological strength index(GSI)classification for very weak and sheared rock masses-The case of the Athens schist formation[J].Bulletin of Engineering Geology&Environment,1998,57(2):151-160.
    [15]HOEK E,BROWN E T.Practical estimates of rock mass strength[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1997,34(8):1165-1186.
    [16]HOEK E,DIEDERICHS M S.Empirical estimation of rock mass modulus[J].International Journal of Rock Mechanics&Mining Sciences,2006,43(2):203-215.
    [17]JAEGER J C,COOK N G W.Fundamentals of rock mechanics[M].New York:Chapman and Hall,1979.
    [18]BYERLEE J D.Friction of rock[J].Pure&Applied Geophysics,1978,116:615-626.
    [19]谷明成,何发亮,陈成宗.秦岭隧道岩爆的研究[J].岩石力学与工程学报,2002,21(9):1324-1329.GU Ming-cheng,HE Fa-liang,CHEN Cheng-zong.Study on rockburst in Qingling Tunnel[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(9):1324-1329.
    [20]陶波,伍法权,郭启良,等.高地应力作用下乌鞘岭深埋长隧道软弱围岩流变规律研究[J].地球与环境,2005,33(增刊l):304-308.TAO Bo,WU Fa-quan,GUO Qi-liang,et al.Research on rheology rule of deep-buried long tunnel of Wuqiaoling under high crust stress[J].Earth and Environment,2005,33(Supp.l):304-308.
    [21]刘朝祯.太平驿引水隧洞岩爆的预测和防治[J].铁道建筑技术,1994,(3):8-12.LIU Chao-zheng.Prediction and prevention of rock bursts in water sewage tunnel of Taipingyi project[J].Railway Construction Technology,1994,(3):8-12.
    [22]李正刚.二滩水电站地下厂房系统洞室围岩变形研究[J].四川水力发电,2004,23(1):43-47.LI Zheng-gang.Study on the deformation of surrounding rock mass of underground factory system of Ertan power station[J].Sichuan Water Power,2004,23(1):43-47.
    [23]黄建新,成旭东.江垭地下厂房洞室群围岩稳定性研究综述[J].湖南水利,1997,(2):5-9.
    [24]徐林生,王兰生.二郎山隧道岩爆岩石力学试验研究[J].公路,2000,12(12):6-8.XU Lin-sheng,WANG Lan-sheng.Research on the rock mechanics of rock burst disasters in Erlangshan Tunnel[J].Highway,2000,12(12):6-8.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心