基于声波法和FLAC~(3D)的矿井底板采动破坏特征研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
利用声波法对华北地区某典型岩溶水害矿井的4707工作面煤层底板不同深度、不同位置的声波波速进行探测,获得了随工作面推进时的波速变化曲线。结果表明:垂深3.9~12.1m之间的声速曲线出现较大的波动,在钻孔距工作面距离15~5m时声波波速迅速升高,在6~5m处达到最大值,工作面推过钻孔后,波速不断降低。垂深13m以上,声波曲线趋于稳定,说明已不在破坏范围内。声速法判断底板最大破坏深度为12.1m。结合FLAC3D软件,利用4707工作面的实际地质资料数值模拟煤层底板采动破坏过程,得出了煤层底板采动破坏特征:底板破坏区沿采空区四周和底板向下扩散呈现出喇叭形,随工作面的不断推进,破坏区也不断前移。
The acoustic method was used to detect the wave velocities of the 4707 working face floor from different depth and locations in a typical karst water disaster mine in North China,and the variation curves of wave velocities along with the advance of the working face were obtained.The results show that the significant fluctuation appears in the variation curves when the vertical depth is between 3.9 m and 12.1 m.The wave velocities rise rapidly when the distance from the drilling to the working face is between 15 m to 5 m,and achieve the maximum value when it is between 6 m and 5 m,but they are reduced gradually when the working face passes the drilling.The variation curves of wave velocities tend to be stable when the vertical depth exceeds 13 m,which reveals that it has not been in the range of damage and that 12.1 m is the maximum damage depth of floor detected by the acoustic method.Combined with FLAC3D software,the mining failure process of the coal floor was simulated by using the actual geological data of the 4707 working face,which is concluded that the failure area presents a horn shape along the goaf around and the floor and that the failure area constantly moves forward along with the advance of the working face.
引文
[1]于师建,王玉和,王渭明,等.岩体测试与探测[M].北京:地震出版社,2004:98-101.
    [2]张慎河,彭苏萍,刘玉香,等.含煤地层裂隙岩石声波速度特征试验研究[J].山东科技大学学报:自然科学版,2006,25(1):28-31.ZHANG Shenhe,PENG Suping,LIU Yuxiang.Experimental study on properties of acoustic velocity in crack rocks of coal-bearing strata[J].Journal of Shandong University of Science and Technology:Natural Science,2006,25(1):28-31.
    [3]刘传武,张明,赵武升.用声波测试技术确定煤层开采后底板破坏深度[J].煤炭科技,2003,1(4):4-5.LIU Chuanwu,ZHANG Ming,ZHAO Wusheng.Destroying depth of coal seam floor's failure by sound wave technology[J].Coal Science and Technology,2003,1(4):4-5.
    [4]关英斌,李海梅,路军臣.显德汪煤矿9号煤层底板破坏规律的研究[J].煤炭学报,2003,28(2):121-125.GUAN Yingbin,LI Haimei,LU Junchen.Research of No.9coal seam floors fracture regularity in Xiandewang Coal Mine[J].Journal of ChinaCoal Society,2003,28(2):121-125.
    [5]张平松,吴基文,刘盛东.煤层采动底板破坏规律动态观测研究[J].岩石力学与工程学报,2006,25(S1):3010-3013.Zhang Pingsong,Wu Jiwen,Liu Shengdong.Study on dynamic observation of coal seam floor’s failure law[J].Chinese Jour-nal of Rock Mechanics and Engineering,2006,25(S1):3010-3013.
    [6]孙向阳,孟祥瑞,赵光明,等.采面底板及煤壁破坏塑性区研究[J].煤炭科技,2009,3(3):10-12.SUN Xiangyang,Meng Xiangrui,ZHAO Guangming,et al.Research on analysis method of backplane destroys under wor-king surface with plastic theory[J].Coal Science&Technology Magazine,2009,3(3):10-12.
    [7]鲁海峰.承压水上采煤底板变形破坏特征数值模拟研究及其工程应用[D].淮南:安徽理工大学,2008:23-49.
    [8]白国良.基于FLAC3D的采动岩体等效连续介质流固耦合模型及应用[J].采矿与安全工程工报,2010,27(1):106-110.BAI Guoliang.Fluid-solid coupling model of equivalent continuous medium in overburden rock based on FLAC3Dand its ap-plication[J].Journal of Mining&Safety Engineering,2010,27(1):106-110.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心