双向解耦平台与结构一体化的混合控制分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
由于传统的混合控制隔振平台在竖直、水平两个方向上存在相互制约作用,从而增加了其在实际工程应用中的难度。因此首先建立了一种对竖直和水平方向双向解耦的新型混合控制隔振平台,将其置于搭建的三层结构厂房模型中,通过数值仿真对比分析了无控制结构楼板和被动隔振平台的响应,验证了该平台模型的合理性和可配置性。在此基础上,对比分析了考虑平台与结构一体化作用对时程响应控制的影响,结果表明,对于精度要求较高的微振动控制,运用双向解耦隔振平台可以大大简化控制设计系统,同时考虑一体化控制有利于进一步深化及优化控制设计。最后运用三分之一倍频程谱对无控、被动及混合控制的速度响应进行频域分析,结果表明该混合控制方案可以有效实现全频域振动的隔离。
For the traditional hybrid control vibration isolation platform,because of the interaction between the vertical direction and the horizontal one,it becomes difficult to be applied in practical engineering.Thus,in this paper a new vibration isolation platform is firstly proposed,for which,the two directions are uncoupled and the platform is then set to a three story factory model.And the numerical analysis is done for the uncontrolled structural floor response and the passive control isolation platform response to verify the reasonableness and configurability of the model.Then,the comparative analysis is done,through which,the influence of the integration control of the platform with the coupling structure upon the time history response is disclosed.The results show that for the high precision micro-vibration control,the double-direction decoupling platform can greatly simplify control design system and the integration control is conducive to further deepening and optimal control design.Finally,one-third octave spectrum is used to analyze the response of the velocity under uncontrolled,passive and hybrid control in the frequency domain,the results show that the hybrid control scheme can achieve full frequency vibration isolation.
引文
[1]Fujita T,Tagawa Y,Kajiwara K,et al.Active 6-DOF microvibration control system using piezoelectricactuator[A].Proceedings of the Third Conference onAdaptive Structures[C].San Diego,California:1992:514—528.
    [2]Gardonio P,Elliott S J,Pinnington R J.Activeisolation of structural vibration on a multiple degree offreedom system.Part I:The dynamics of the system[J].Journal of Sound and Vibration.1997,207(1):61—93.
    [3]Gardonio P,Elliott S J,Pinnington R J.Activeisolation of structural vibration on a multiple degree offreedom system[J].Part II:Effectiveness of ActiveControl Strategies.Journal of Sound and Vibration.1997,207(1):95—121.
    [4]Nakamura Y,Nakayama M,Masuda K,et al.Development of active 6-DOF microvibration controlsystem using giant magnetostrictive actuator[A].Proceedings of the SPIE Conference on Smart Systemsfor Bridges,Structures and Highways[C].NewportBeach,California:1999:229—240.
    [5]Nakamura Y,Nakayama M,Kura M,et al.Application of active micro-vibration control systemusing a giant magnetostrictive actuator[J].Intelligent Material Systems and Structures,2007,18(11):1 137—1 148.
    [6]张春良.微制造平台振动主动控制研究[D].杭州:浙江大学,2003.Zhang C L.Study on active vibration control of amicro-manufacturing platform[D].Hangzhou:Zhejiang University,2003.
    [7]Xu Y L,Yang Z C,Chen J,et al.Microvibrationcontrol platform for high technology facilities subjectto traffic-induced ground motion[J].EngineeringStructures;2003,25(8):1 069—1 082.
    [8]Xu Y L,Li B.Hybrid platform for high-techequipment protection against earthquake andmicrovibration[J].Earthquake Engineering&Structural Dynamics,2006,35(8):943—967.
    [9]郭安薪,徐幼麟,李惠,高科技厂房精密仪器工作平台的微振混合控制[J].地震工程与工程振动,2004,24(1):161—165.Guo A X,Xu Y L,Li H.Hybrid control ofmicrovibration for high technology facilities[J].Earthquake Engineering and Engineering Vibration,2004,24(1):161—165.
    [10]Ungar E E,Sturz D H,Amick C H.Vibrationvontrol design of high-technology facilities[J].Soundand Vibration,1990,24(7):20—27.
    [11]王济,胡晓.Matlab在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.Wang J,Hu X.Matlab Application in VibrationSignal Processing[M].Beijing:China Water&Power Press,2006.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心