压力作用下石英砂岩的热红外光谱变化与敏感响应波段
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
在实验室对石英砂岩进行单轴压缩加载,利用红外光谱辐射计(观测波段8~14μm)对加载过程中试样的红外光谱辐射变化特征进行观测,研究岩石红外辐射对应力响应的敏感波段。实验结果显示,当岩石被加载时,红外光谱随之发生变化,但不同波段变化特征不同,在8.0~11.5μm范围(尤其在8.6~9.1μm)石英砂岩的红外光谱辐射强度随载荷增加而增加,二者间近似呈两次曲线关系,且光谱辐射强度的"信噪比"较高;在其它波段光谱辐射强度与载荷的相关性差且"信噪比"较低。由此表明,8.0~11.5μm是石英砂岩红外辐射对应力响应的敏感波段,也是岩石应力与灾变红外遥感监测的优势波段,而最佳监测波段是8.6~9.1μm。
In the present paper the thermal infrared spectr al variation of quartz sandstone under uniaxial compression was detected by a sp ectroradiometer to study the sensitively responding waveband of infrared radiati on excited by the pressure.The experimental result shows that the infrared spec trum varies with the load,and the variation feature is different in different w avebands.The infrared radiation intensity increases with the increase in the lo ad within the waveband 8.0~11.5 μm(specially in 8.6~9.1 μm),and there is a quadratic correlation between them,meanwhile the signal-to-noise ratio o f spectrum radiation is also higher in the waveband.But in other wavebands the correlatio n is worse and the signal-to-noise is also lower.This indicates that the wave band 8.0~11.5 μm is the sensitive waveband of infrared radiation to the pres sure, and it is also the superior waveband for infrared remote sensing monitoring the stress and catastrophe of rock.The optimum waveband is 8.6~9.1 μm.
引文
[1]Gorny V I,Salman A G,Tronin A A,et al.Proceeding of the Academy of Sciences of the USSR,1988,30(1):67.
    [2]QIANG Zu-ji,XU Xiu-deng,LIN Chang-gong(强祖基,徐秀登,赁常恭).Chinese Science Bulletin(科学通报),1990,35(17):1324.
    [3]Tronin A A.International Journal of Remote Sensing,1996,17(8):1439.
    [4]Ouzounov D,Freund F.Advances in Space Research,2004,33(3):268.
    [5]Arun K S,Swapnamita C J.Ind.Geophys.Union,2005,9(3):197.
    [6]ZHANG Yuan-sheng,GUO Xiao,ZHONG Mei-jiao,et al(张元生,郭晓,钟美娇,等).Chinese Science Bulletin(科学通报),2010,55(10):904.
    [7]GENG Nai-guang,CUI Cheng-yu,DENG Ming-de(耿乃光,崔承禹,邓明德).Acta Seismologica Sinica(地震学报),1992,14(suppl.):645.
    [8]Wu L X,Cui C Y,Geng N G,et al.Int.J.Rock Mech.&Min.Sci.,2000,37(6):879.
    [9]Wu L X,Liu S J,Wu Y H,et al.Int.J.Rock Mech.&Min.Sci.,2006,43(3):473.
    [10]Wu L X,Liu S J,Wu Y H,et al.Int.J.Rock Mech.&Min.Sci.,2006,43(3):483.
    [11]WU Li-xin,LIU Shan-jun,WU Yu-hua(吴立新,刘善军,吴育华).Introduction to Remote Sensing Rock Mechanics:Infrared RemoteSensing for Rock Catastrophe due to Overloaded(遥感-岩石力学引论:岩石受力灾变的红外遥感).Beijing:Science Press(北京:科学出版社),2006.
    [12]Liu S J,Wu L X,Wu Y H.Int.J.Rock Mech.&Min.Sci.,2006,43(6):972.
    [13]MA Jin,LIU Li-qiang,LIU Pei-xun,et al(马瑾,刘力强,刘培洵,等).Chinese Journal of Geophysics(地球物理学报),2007,50(4):1141.
    [14]CUI Cheng-yu,DENG Ming-de,GENG Nai-guang.Chinese Science Bulletin,1993,38(16):538.
    [15]Freund F T,Takeuchi A,Lau B W S,et al.Earth,2007,2:7.
    [16]Thomson W.Trans.R.Soc.Edinburgh,1853,20:83.
    [17]DENG Ming-de,YIN Jing-yuan,LIU Xi-heng,et al(邓明德,尹京苑,刘西垣,等).Remote Sensing Information(遥感信息),2002,(1):2.
    [18]LIU Shan-jun,WU Li-xin,WANG Chuan-ying,et al(刘善军,吴立新,王川婴,等).Chinese Journal of Rock Mechanics and Engineer-ing(岩石力学与工程学报),2004,23(10):1621.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心