大岗山水电站厂房断层控制区域微震监测分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
大岗山水电站地下厂房断层发育,两条陡倾角断层穿过厂房中后部,控制着厂房的围岩稳定性。拱顶处发育的断层由于开挖而出现塌方,需要对塌空区以及地下厂房进行稳定性监测。2010年10月建立南非综合微震系统(ISS)微震监测系统,对断层控制的厂房区域进行微震监测。采用能级分布法、时空分布法、能量指数法、位错法等对断层控制下的塌空区、厂房边墙、断层周边岩体进行了稳定性评价。监测表明,塌空区微震事件少,能级小;边墙岩体位移较小,微震事件数目较少;断层面间滑动位移分布不均,整体位移量不大,断层面岩体活动性不强。因此,断层区域在进行加固后,岩体整体稳定性有所提高,受断层影响较小,故地下厂房稳定性较好。微震监测对水电厂房开挖及运行期的安全稳定性评价有较强的指导意义。
Many faults propagate near the underground powerhouse of Dagangshan power station.Rockmass stability of the underground powerhouse is controlled by two steep angle faults which are extended through the middle and rear parts of the powerhouse.The collapse area near the fault was found when the fault extended through the vault was excavated.So it is necessary to monitor the stability of the powerhouse and collapse area near the faults.The integrated seismic system(ISS) of South Africa is established to monitor the area in October 2010.The unattended system run automatically,which also can be controlled and diagnosed remotely.Four methods such as spatiotemporal distribution method,magnitude level method,energy index method and dislocation method are used to analyze the stability of the collapse area,side walls and the rock mass near the structure plane.The research results show that the underground plant is overall stable and safe.Few seismic events and low magnitude near the collapse area can be got from seismic monitoring data.Two side walls are stable because the number of the seismic events and dislocation slip of the rock mass are small.The slide displacement between the structural planes is scattered and small.And the rock of the fault plane is inactive.Therefore,the stability of collapse area is increased and less influenced by faults after the rock is reinforced by the anchor.It is of guide significance to use microseismic monitoring to assess the stability of power house during the running and construction stages.
引文
[1]MENDECKI A J.Seismic monitoring in mines[M].London:Chapman and Hall Press,1997.
    [2]DURRHEIM R J,HAILE A,ROBERTS M K C,et al.Violent failure of a remnant in a deep South African gold mine original research article[J].Tectonophysics,1998,289(1-3):105-116.
    [3]SHUNJI S.Characteristics of microseismic events induced during hydraulic fracturing experiments at the Hijiori hot dry rock geothermal energy site,Yamagata,Japan[J].Tectonophysics,1998,289(1-3):171-188.
    [4]SRINIVASAN C,ARORA S K,BENADY S.Precursory monitoring of impending rockbursts in Kolar gold mines from microseismic emissions at deeper levels[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(7):941-948.
    [5]鲁振华,张连成.门头沟矿微震的近场监测效能评估[J].地震,1989,9(5):32-39.LU Zhen-hua,ZHANG Lian-cheng.Evaluation of near-field monitoring efficiency of tremors in Mentougou mine[J].Earthquake,1989,9(5):32-39.
    [6]李庶林,尹贤刚,郑文达,等.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报,2005,24(12):2048-2053.LI Shu-lin,YIN Xian-gang,ZHENG Wen-da,et al.Research on multichannel microseismic monitoring system and its application to Fankou lead-zinc mine[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(12):2048-2053.
    [7]唐礼忠,XIA K W,李夕兵.矿山地震活动多重分形特性与地震活动性预测[J].岩石力学与工程学报,2010,29(9):1818-1824.TANG Li-zhong,XIA K W,LI Xi-bing.Seismic multi-fractal characteristics in mines and seismicity prediction[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(9):1818-1824.
    [8]杨志国,于润沧,郭然,等.基于微震监测技术的矿山高应力区采动研究[J].岩石力学与工程学报,2009,28(增刊2):3632–3638.YANG Zhi-guo,YU Run-cang,GUO Ran,et al.Research of mining based on microseismic monitoring technology in high-stress area[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(Supp.2):3632-3638.
    [9]杨承祥,罗周全,唐礼忠.基于微震监测技术的深井开采地压活动规律研究[J].岩石力学与工程学报,2007,26(4):818–824.YANG Cheng-xiang,LUO Zhou-quan,TANG Li-zhong.Study on rule of geostatic activity based on microseismic monitoring technique in deep mining[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(4):818-824.
    [10]杨志国,于润沧,郭然.深井矿山微震事件波形研究[J].中国工程科学,2008,10(8):69-72.YANG Zhi-guo,YU Run-cang,GUO Ran.Research of seismic events waveform in deep copper mine[J].Engineering Sciences,2008,10(8):69-72.
    [11]唐礼忠,汪令辉,张君,等.大规模开采矿山地震视应力和变形与区域性危险地震预测[J].岩石力学与工程学报,2011,30(6):1168-1178.TANG Li-zhong,WANG Ling-hui,ZHANG Jun,et al.Seismic apparent stress and deformation in a deep mine under large-scale mining and areal hazardous seismic prediction[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(6):1168-1178.
    [12]董陇军,李夕兵,唐礼忠.无需预先测速的微震震源定位的数学形式及震源参数确定[J].岩石力学与工程学报,2011,30(10):2058-2067.DONG Long-jun,LI Xi-bing,TANG Li-zhong.Mathematical functions and parameters for microseismic source location without pre-measuring speed[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(10):2058-2067.
    [13]陈炳瑞,冯夏庭,曾雄辉,等.深埋隧洞TBM掘进微震实时监测与特征分析[J].岩石力学与工程学报,2011,30(2):275-283.CHEN Bing-rui,FENG Xia-ting,ZENG Xiong-hui,et al.Real-time microseismic monitoring and its characteristic analysis during TBM tunneling in deep-buried tunnel[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(2):275-283.
    [14]徐奴文,唐春安,沙椿,等.锦屏一级水电站左岸边坡微震监测系统及其应用研究[J].岩石力学与工程学报,2010,29(5):915-925.XU Nu-wen,TANG Chun-an,SHA Chun,et al.Microseismic monitoring system establishment and its engineering applications to left bank slope of Jinping I hydropower station[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(5):915-925.
    [15]徐奴文,唐春安,周钟,等.岩石边坡潜在失稳区域微震识别方法[J].岩石力学与工程学报,2011,30(5):893-900.XU Nu-wen,TANG Chun-an,ZHOU Zhong,et al.Identification method of potential failure regions of rock slope using microseismic monitoring technique[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(5):893-900.
    [16]徐奴文,唐春安,吴思浩,等.微震监测技术在大岗山水电站右岸边坡中的应用[J].防灾减灾工程学报,2010,30(增刊l):216-221.XU Nu-wen,TANG Chun-an,WU Si-hao,et al.Application of microseismic monitoring technique in the right bank slope of Dagangshan Hydropower Station[J].Journal of Disaster Prevention and Mitigation Engineering,2010,30(Supp.1):216-221.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心