开孔式双钢管约束屈曲支撑在双层网壳的减震控制分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
目的研究开孔式双钢管约束屈曲支撑的耗能减震性能,为双层网壳的减震控制研究提供一种新的减震控制方法.方法利用ANSYS有限元分析软件对开孔和不开孔的双钢管约束屈曲支撑进行了拉压循环荷载作用下的滞回性能的对比分析,以一跨度为100 m的双层球面网壳为例,用支撑替代结构中的部分下弦杆件及腹杆,建立了网壳减震结构的数值模型,采用三种不同的支撑布置方式对结构进行控制,进行了三维地震作用时程分析.结果开孔后支撑的承载力并没有降低,耗能系数略有提高,三种不同支撑布置方式下,结构的节点水平位移峰值最大减震系数为23.8%、节点竖向位移峰值最大减震系数为24.3%.最大杆件轴力响应明显减小,腹杆替换效果为最好,达到30%~40%;替换下弦杆方式以及同时替换部分下弦杆的控制效果均在20%以上.结论双钢管约束屈曲支撑开孔后构造简单,耗能能力强,将其合理布置在双层网壳结构中,减震效果较好.
The purpose of this paper is to study the seismic energy dissipation performance of perforated double tube buckling-restrained brace(BRB),and to provide a new method for the seismic control of double-layer reticulated shell.Finite element analysis software ANSYS is used to analyze and contrast the hysteretic behavior under cyclic loading between perforated double tube buckling-restrained brace and traditional double tube buckling-restrained brace.In this paper,taking a 100m span double-layer reticulated shell as an example,the numerical model of seismic reduction structure by the replacement of some lower chords and web member with buckling-restrained brace is established,and the time-history response of structure in three arrangement modes under three-dimensional earthquake action is analyzed.The results show that the bearing capacity of perforated double tube buckling-restrained brace does not decrease and the dissipative coefficient slightly increases.The maximum damping coefficient of horizontal nodal displacement in three arrangement modes is 23.8 percent,and the vertical displacement is 24.3 percent.The maximum dynamic axial force of members decreases obviously,the web member of which decrease to the minimum value of 30 percent to 40 percent.The conclusion is that the perforated double tube buckling-restrained brace with simple structures and high energy dissipation has good damping effect on the double-layer reticulated shell in reasonable arrangement modes.
引文
[1]全希坤,李宏男,曹勇.减震控制技术在大跨空间网壳结构中的研究与发展[J].沈阳建筑大学学报:自然科学版,2006,22(5):745-749.(Quan Xikun,Li Hongnan,Cao Yong.Study and de-velopment of earthquake mitigation control of long-span spatial reticulated shell structure[J].Journal ofShenyang Jianzhu University:Nature Science,2006,22(5):745-749.)
    [2]范峰,沈世钊.单层柱面网壳的粘滞阻尼器减震分析[J].世界地震工程,2003,19(2):28-29.(Fan Feng,Shen Shizhao.Vibration redution analysisof viscous damper on single-layer reticulated vaults[J].World Earthquake Engineering,2003,19(2):28-29.)
    [3]张凯.钢网壳结构采用黏滞阻尼器的动力稳定性控制分析[D].上海:同济大学,2009.(Zhang Kai.The dynamical stability control of retic-ulated shell w ith viscous dampers[D].ShangHai:Tongji University,2009.)
    [4]王社良,田秀婷,代建波,等.基于可控性柱面网壳结构主动控制作动器布置的优化研究[J].振动与冲击,2011,30(9):50-54.(Wang Sheliang,Tian Xiuting,Dai Jianbo,et al.Op-timal placement of actuators for active vibration con-trol of cylindrical reticulated shells based on control-lability[J].Journal of Vibration and Shock,2011,30(9):50-54.)
    [5]瞿伟廉,徐幼麟.ER/MR智能阻尼器对空间网壳结构地震反应的半主动控制[J].地震工程与工程振动,2001,21(4):24-31.(Qu Weilian,Xu Youlin.Semi-active control forearthquake responses of reticulated shells w ith ER/M R smart dampers[J].Journal of Earthquake Engi-neering and Engineering Vibration,2001,21(4):24-31.)
    [6]张毅刚,梁海彤.替换可控杆件的双层柱面网壳半主动控制策略[J].北京工业大学学报,2009,29(3):320-324.(Zhang Yigang,Liang Haitong.Semi-active controlstrategy of double layer cylindrical lattice shell repla-cing controllable chords[J].Journal of BeiJing Uni-versity of Thchnology,2009,29(3):320-324.)
    [7]杨飏,李友明,何政.双层球面网壳结构的阻尼替代杆件减振控制研究[J].世界地震工程,2011,21(7):83-89.(Yang Yang,Li Youming,He Zheng.Vibration con-trol analysis of a double-layer spherical latticed shellw ith replaced bar-type dampers[J].World Earth-quake Engineering,2011,21(7):83-89.)
    [8]Black C J,Makris N,Aiken I D.Component testing,seismic evaluation,and characterization of Buckling-restrained Braces[J].Journal of Structural Engineer-ing,2004,130(6):880-894.
    [9]Kiggins S,Uang C M.Reducing residual drift ofbuckling-restrained braced frames as adual system[J].Engineering Structures,2006,28(11):1525-1532.
    [10]Sabelli R,Mahin S,Chang C.Seismic demands onsteel braced frame buildings w ith buckling restrainedbraces[J].Engineering Structures,2003,25(5):655-666.
    [11]Kim J,Choi H.Behavior and design of structuresw ith buckling-restrained braces[J].EngineeringStructures,2004,26(6):693-706.
    [12]Tezcan S S,Uluca O.Reduction of earthquake re-sponse of place frame buildings by viscoelasticdampers[J].Engineering Structures,2003,25(14):1755-1761.
    [13]Iwata M,Murai M.Buckling-restrained brace usingsteel mortar planks performance evaluation as a hys-teretic damper[J].Earthquake Engineering andstructural Dynamics,2006,35:1807-1826.
    [14]Tremblay R,Bolduc P,Neville R.Seismic testingand performance of buckling-restrained bracing sys-tems[J].Canadian Journal of Civil Engineering,2006,33(2):183-198.
    [15]哈敏强.普通和新型抑制屈曲支撑的力学性能及其应用研究[D].上海:同济大学,2004.(Ha Minqiang.Study on the mechanical perform-ances and applications of conventional and innova-tive buckling restrained braces[D].ShangHai:Tongji University,2004.)
    [16]杨叶斌,邓雪松,钱洪涛,等.二重钢管防屈曲支撑的性能研究[J].工程抗震与加固改造,2010,32(2):75-80.(Yang Yebin,Deng Xuesong,Qian Hongtao,et al.Study on the performance of double-steel[J].TubeBuckling-Restrained Brace,2010,32(2):75-80.)
    [17]王秀丽,陈明.一种适用于杆系结构的屈曲约束支撑的有限元分析[J].兰州理工大学学报,2007,33(3):124-127.(Wang Xiuli,Chen Ming.FEM analysis of a kind ofbuckling-restrained brace fit in space truss structure[J].Journal of Lanzhou University of Technology,2007,33(3):124-127.)
    [18]ANSI/SISC 345-05.Seismic provisions for structuralsteel buildings[S].American:American Institute ofSteel Construction,2005.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心