X70大变形管线钢延迟加速冷却组织和性能分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
利用热模拟、力学性能测试和材料显微分析等试验技术,研究了X70管线钢在延迟加速冷却条件下的组织与性能的变化规律。研究表明,通过延迟加速冷却,X70管线钢可获得贝氏体+铁素体(B+F)双相组织。随着始冷温度的上升,试验钢的贝氏体含量增加,铁素体含量降低,导致材料屈服强度上升,塑性下降。当始冷温度为530℃时,X70管线钢有较低的屈强比,较大的均匀伸长率和较大的形变强化指数,符合大变形管线钢的技术要求。
The change rule of microstructure and properties after delaying accelerated cooling(DAC) for X70 pipeline steel was investigated through thermal simulation, mechanical property test and microscopic analysis method. The results showed that bainite +ferrite(B+F) dual-phases microstructure can be obtained by DAC. With the increasing of starting cooling temperature, the content of bainite increases and content of ferrite decreases, which lead to increase of yield strength and reduce of plasticity. When starting cooling temperature is 530 ℃, lower yield ratio, higher uniform elongation and strain hardening index can be obtained, which accord with the technical requirements of high deformation pipeline steel.
引文
[1]高惠临.管线钢与管线钢管[M].北京:中国石化出版社,2012:1-3.
    [2]赵应奎.西气东输工程管道线路地质灾害及其防治对策[J].天然气与石油,2002,20(01):44-47.
    [3]李鹤林,李霄,吉玲康,等.油气管道基于应变的设计及抗大变形管线钢的开发与应用[J].焊管,2007,30(07):5-11.
    [4]董玉华,于大涛,李鹤林.用于地震及地质灾害条件下的钢管性能研究进展[J].焊管,2008,31(04):14-15.
    [5]郭恩栋,刘红丽,吴伟.长距离输油管线震后功能状态分析[J].地震工程与工程振动,2005,25(05):165-168.
    [6]张陵,郭惠勇,孙清,等.长输管道抗震研究的进展与趋向[J].西安交通大学学报,2001,35(02):203-209.
    [7]MOHR W,GORDON R.Strain-based Design Guidelines for Pipeline Girth Welds[C]∥Proceedings of the Fourteenth International Offshore and Polar Engineering Conference.Toulon:ISOPE,2004:10-17.
    [8]NOBUYUKI I,MITSSUHIRO O,KONDO J,et al.Design Concept and Production of High Deformability Linepipe[C]∥Proceedings of the 6th International Pipeline Conference.Calgary:ASME,2006:1-8.
    [9]NOBUYUKI I,MITSSUHIRO O,KONDO J,et al.Material Development and Strain Capacity of Grade X100 High Strain Linepipe[C]∥Proceedings of the 8th International Pipeline Conference.Calgary:ASME,2008:1-8.
    [10]MITSSUHIRO O,TOYOHISA S,NOBUYUKI I,et al.Development of High Strength Linepipe with Excellent Deformability[C]∥Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering.Halkidiki:ASME,2005:63-70.
    [11]NOBUYUKI I,MITSSUHIRO O,JUNJI S,et al.Development of Ultra-high Strength Linepipes with Dualphases Microstructure for High Strain Application[C]∥Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering.San Diego:ASME,2007:185-191.
    [12]JI LINGKANG,CHEN HONGYANY,GAO HUILIN,et al.Key Issues in the Specification of High Strain Line Pipe Used in Strain-based Designed Districts of the 2nd West to East Pipeline[C]∥Proceedings of the 8th International Pipeline Conference.Calgary:ASME,2008:695-703.
    [13]王伟,严伟,胡平,等.抗大变形管线钢的研究进展[J].钢铁研究学报,2011,23(02):1-6.
    [14]聂文金,尚成嘉,关海龙,等.铁素体/贝氏体(F/B)双相钢组织调控及其抗变形行为分析[J].金属学报,2012,48(03):298-306.
    [15]SALEHI A R,SERAJZADEH S,KARIMITAHERI A.A Study on the Microstructural Changes in Hot Rolling of Dual-phase steels[J].J Mater Sci,2006(41):1917-1925.
    [16]王克鲁,鲁世强,李鑫,等.冷却制度对700 MPa级低碳贝氏体钢组织与性能的影响[J].材料热处理学报,2008,29(05):77-79.
    [17]刘东雨,方鸿生,白秉哲,等.无碳化物贝氏体/马氏体复相钢的强韧性[J].机械工程学报,2003,39(08):27-31.
    [18]冯耀荣,高惠临,霍春勇,等.管线钢显微组织的分析与鉴别[M].西安:陕西科学技术出版社,2008.
    [19]于庆波,孙莹,倪宏昕,等.不同类型的贝氏体组织对低碳钢力学性能的影响[J].机械工程学报,2009,45(12):284-287.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心