混凝土重力坝极限抗震能力评价方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
从基于性能的抗震设防标准及理论出发,针对混凝土重力坝的结构特点,在结构地震反应时域分析的基础上,提出从大坝需求能力比与超应力累积持时、破坏模式、抗滑稳定性及坝基塑性区扩展等方面综合评价混凝土重力坝极限抗震能力的研究方法。以印度Koyna重力坝为例,采用扩展有限元法(XFEM)模拟了大坝动力破坏过程,数值模拟结果与文献中的模型试验结果基本一致,验证了计算模型的有效性,从基于性能的抗震评价模型及大坝开裂破坏模式评价Koyna重力坝的极限抗震能力为0.40g~0.45g。最后对国内某混凝土重力坝的极限抗震能力进行了探讨和研究,根据大坝需求能力比与超应力累积持时、破坏模式、抗滑稳定性及坝基塑性区破坏范围的综合评价结果,初步认为该重力坝的极限抗震能力为0.45g~0.50g。
This paper proposes a comprehensive evaluation method of ultimate aseismic capacity limit of concrete gravity dams by performance-based seismic fortification criterion and theory.This method is conducted for analysis of nonlinear seismic responses by considering demand-capacity ratio,cumulative overstress duration,failure mode,stability,and plastic zone.An extended finite element method(XFEM) is used to analyze the dynamic failure process of the Koyna dam in India,and the numerical simulations are well consistent with the model test results in the literature.This analysis shows aseismic capacity of 0.45g~0.50g.This comprehensive evaluation method is also applied to preliminary analysis of a domestic concrete gravity dam,and its capacity of 0.45g~0.50g is obtained.
引文
[1]陈生水,霍家平,章为民.“5.12”汶川地震对紫坪铺混凝土面板坝的影响及原因分析[J].岩土工程学,2008,30(6):795-801.CHEN Shengshui,HUO Jiaping,ZHANG Weimin.Analysis of effects of“5.12”Wenchuan earthquake on Zipingpu concrete facerock-fill dam[J].Chinese Journal of Geotechnical Engineering,2008,30(6):795-801.(in Chinese)
    [2]张社荣,王高辉,王超.混凝土重力拱坝极限抗震能力评价方法初探[J].四川大学学报(工程科学版),2012,44(1):7-12.ZHANG Sherong,WANG Gaohui,WANG Chao.Preliminary study on the ultimate seismic capacity evaluation of concrete gravityarch dam[J].Journal of Sichuan University:Engineering Science Edition,2012,44(1):7-12.(in Chinese)
    [3]Ghanaat Y.Failure modes approach to safety evaluation of dams[C]∥13th World Conference Earthquake Engineering,Canada,2004:1115.
    [4]Pekau O A,Cui Yuzhu.Failure analysis of fractured dams during earthquakes by DEM[J].Engineering Structures,2004,26:1483-1502.
    [5]赵剑明,温彦锋,刘小生,等.深厚覆盖层上高土石坝极限抗震能力分析[J].岩土力学,2010,31(01):41-47.ZHAO Jianming,WEN Yanfeng,LIU Xiaosheng,et al.Study of maximum aseismic capability of high earth-rock dam on deep riverbed alluviums[J].Rock and Soil Mechanics,2010,31(01):41-47.(in Chinese)
    [6]Bogart C,Mendez U,Eduardo Botero Jaramillo,et al.Influence of concrete interface friction on the seismic performance of fractured concrete dams[C]∥The12th International Conference of International Association for Computer Methods and Advances in Geomechanics,2008:2758-2765.
    [7]Raphael J M.The tensile strength of concrete[J].ACI J Proc,1984,81(17):158-165.
    [8]Yamaguchi Y,Hall R,Sasaki T,et al.Seismic performance evaluation of concrete gravity dams[C]∥The13th World Conference on Earthquake Engineering,Canada,2004:1068.
    [9]Belytschko T,Black T.Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering,1999,45(5):601-620.
    [10]Hibbitt,Karlsson&Sorensen,Inc.ABAQUS/Standard User's Manual;ABAQUS/CAE User's Manual[M].USA:HKSCo,2002.
    [11]Chopra A K,Chakrabarti P.The Koyna earthquake and the damage to Koyna dam[J].Bull Seism Soc Am,1973,63(2):381-397.
    [12]National Research Council(U.S.).Earthquake Engineering for Concrete Dams:Design,Performance,and Research Needs[M].National Academies Press.USA1990:99-100.
    [13]Wang Guanglun,Pekau O A,Zhang Chuhan,et al.Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics[J].Engineering Fracture Mechanics,2000,65(1):67-87.
    [14]Lee J,Fenves G L.A plastic-damage concrete model for earthquake analysis of dams[J].Earthquake Engineering and Structural Dynamics,1998,27(9):937-956.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心