基于遗传-模拟退火算法的单层球面网壳结构破坏模式优化
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
将遗传算法和模拟退火算法相结合,以遗传算法作为基础,将模拟退火机制融入其中,提出遗传-模拟退火算法(GASA)。通过三个经典函数最小值求解,表明混合算法在优化行为、优化效率及稳定性方面均具有明显优势。以构件截面为优化变量,应用构形易损性理论,以结构集簇过程中自由簇构形度Q标准差最小为优化目标,建立单层球面网壳结构倒塌破坏模式优化模型。以一个原型跨度75 m、相似比1∶10的单层球壳振动台试验模型为例,采用GASA算法对此试验模型进行倒塌模式优化分析,通过优化前后自由簇构形度变化规律和加速度时程分析结果的对比,表明提出的优化方法及优化模型能够实现单层球面网壳在地震作用下的倒塌模式从无征兆的动力失稳破坏转化为承载力强度破坏。
A genetic-simulated annealing algorithm(GASA) is proposed by combining genetic algorithm with simulated annealing algorithm in this paper.The combined algorithm takes genetic algorithm as the main process and integrates with simulated annealing mechanism.Firstly,by solving the minimum values of three classical functions,it was demonstrated the obvious advantages of the combined algorithm in optimization behavior,optimization efficiency and stability.Secondly,using the frame sections as the optimization variables and the minimum standard deviation of the well-formedness Q of free clusters in the clustering process as the optimization object,a collapse mode optimization model for the single-layer latticed shell was established based on the form vulnerability theory.Finally,taking an example of a shaking table test model of a single-layer spherical shell which had a 1∶ 10 similitude ratio and originated from a prototype of 75 m span,the collapse mode optimization was carried out with GASA algorithm.By comparison of the change rule of Q of free clusters and the results of time history analysis,it is shown that the optimization results by the optimization method and the optimization model can transform the collapse scenario of single-layer spherical shells under earthquake excitations from dynamic instability with no obvious signs to strength failure.
引文
[1]沈世钊,支旭东.球面网壳结构在强震下的失效机理[J].土木工程学报,2005,38(1):11-29.(ShenShizhao,Zhi Xudong.Failure mechanism of reticularshells subjected to dynamic actions[J].China CivilEngineering Journal,2005,38(1):11-29.(inChinese))
    [2]沈世钊.大跨空间结构的发展:回顾与展望[J].土木工程学报,1998,31(3):5-14.(Shen Shizhao.Development of long-span structures:a review andprospect[J].China Civil Engineering Journal,1998,31(3):5-14.(in Chinese))
    [3]Kim H,Querin O M,Steven G P.On the developmentof structural optimization and its relevance inengineering design[J].Design Studies,2002,23(1):85-102.
    [4]Kapoor M P,Kumarasamy K.Optimum configuration oftransmission towers in dynamic response regime[C]//Proceedings of International Symposium on OptimumStructural Design.New York,USA:Wiley,1981:73-82.
    [5]Pantelides C P,Tzan S R.Optimal design ofdynamically constrained structures[J].Computers andStructures,1997,62(1):141-150.
    [6]燕乐纬,蹇开林,黄晓刚.基于广义遗传算法的结构动力响应优化[J].工程力学,2008,25(7):57-65.(Yan Lewei,Jian Kailin,Huang Xiaogang.Dynamic response optimization based on generalizedgenetic algorithm[J].Engineering Mechanics,2008,25(7):57-65.(in Chinese))
    [7]刘齐茂,燕柳斌.强震作用下框架结构的优化设计[J].西北地震学报,2008,30(2):107-112.(LiuQimao,Yan Liubin.An optimal design method forspecial frame structures under severe earthquake loading[J].Northwestern Seismological Journal,2008,30(2):107-112.(in Chinese))
    [8]叶继红,江季松.遗传算法在单层球壳动力响应优化中的应用[J].东南大学学报:自然科学版,2010,40(2):414-419.(Ye Jihong,Jiang Jisong.Application of genetic algorithm in dynamic responseoptimization of single layer dome[J].Journal ofSoutheast University:Natural Science Edition,2010,40(2):414-419.(in Chinese))
    [9]Ye J H,Liu W Z,Pan R.Research on failurescenarios of domes based on form vulnerability[J].Science in China:Series E:Technological Sciences,2011,54(11):2834-2853.
    [10]Goldberg D E.Genetic algorithms in search,optimization and machine learning[M].New York,USA:Addison Wesley,1989:12-43.
    [11]Kirkpatrick S,Gelatt C D,Vecchi M P.Optimizationby simulated annealing[J].Science,1983,220:671-680.
    [12]王小平,曹立名.遗传算法:理论、应用与软件实现[M].西安:西安交通大学出版社,2002:18-25.
    [13]Srinivas M,Patnaik L M.Adaptive probabilities ofcrossover and mutation in genetic algorithms[J].IEEETrans on SMC,1994,24(4):656-667.
    [14]康立山,谢云,尤矢勇.非数值并行算法:模拟退火算法[M].北京:科学出版社,2000:6-15.
    [15]Jeong I K,Lee J J.Adaptive simulated annealinggenetic algorithm for system identification[J].Engineering Application of Artificial Intelligence,1996,9(5):523-532.
    [16]Dekkers A,Aarts E.Global optimization and simulatedannealing[J].Mathematical Programming,1991,50(1/2/3):367-393.
    [17]胡云昌,骆寒冰,徐慧.求解多峰性函数全局最优解的进化算法及其应用研究[J].中国造船,1998,12(3):84-95.(Hu Yunchang,Luo Hanbing,Xu Hui.Study on evolutionary algorithms to search globaloptimizations of multimodel function and its application[J].Ship Building of China,1998,12(3):84-95.(in Chinese))
    [18]Corana A,Marchesi M,Martini C,et al.Minimizingmultimodal functions of continuous variables with the“simulated annealing”algorithm[J].ACMTransactions on Mathematical Software,1987,13(3):262-280.
    [19]Wu X,Blockley D I,Woodman N J.Vulnerability ofstructural systems part 1:rings and clusters[J].CivilEngineering Systems,1993,10(4):301-317.
    [20]Wu X,Blockley D I,Woodman N J.Vulnerability ofstructural systems part 2:failure scenarios[J].CivilEngineering Systems,1993,10(4):319-333.
    [21]Lu Z,Yu Y,Woodman N J,Blockley D I.A theory ofstructural vulnerability[J].The Structural Engineer,1999,77(18):17-24.
    [22]Agarwal J,Blockley D I,Woodman N J.Vulnerabilityof 3-dimensional trusses[J].Structural Safety,2001,23(3):203-220.
    [23]Agarwal J,Blockley D J,Woodman N J.Vulnerabilityof structural systems[J].Structural Safety,2003,25(3):263-286.
    [24]朱南海,叶继红.基于结构易损性理论的网壳失效模式分析初探[J].振动与冲击.2011,30(6):248-255.(Zhu Nanhai,Ye Jihong.Failure scenariosanalysis of single-layer latticed domes based onstructural vulnerability theory[J].Journal of Vibrationand Shock,2011,30(6):248-255.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心