结构钢杆件基于变形和耗能的塑性破坏准则研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
目前工程界常采用的构件双重破坏机制不能准确反映钢杆件不同塑性程度时的破坏特征,且存在低估钢构件极限滞回耗能能力、不能反应非峰值变形对构件破坏的影响等缺陷,制约了对罕遇地震或强风等作用下钢结构的耗能能力及破坏机理的研究。建立了适用于钢杆件的基于变形和耗能的改进的双重破坏机制模型。该模型在较小塑性应变阶段采用基于低周疲劳理论的双重破坏机制非线性组合形式,在较大塑性应变阶段改进了Park-Ang破坏模型,从而可反映不同塑性程度的钢杆件破坏特征。利用一批钢杆件的低周疲劳试验对该模型进行了验证。结果表明,该模型能准确反映构件首次超越和累积耗能联合作用的破坏机理,对工程结构在强风或强震作用过程中结构工作状态的把握以及破坏机理的研究具有重要的理论意义和实用价值。
The commonly used failure models of structural members have the following shortages: 1) steel members' damaged status under different plastic deformations cannot be precisely reflected; 2) their ultimate hysteresis energy dissipation capacity is underestimated; 3) the effect of nonpeak deformation on damage of steel members cannot be indicated. As a result,study on steel structures' failure mechanism under strong dynamic loading is hindered. A modified two-parameter failure model based on deformation and energy dissipation of steel members was proposed here. The authors of the proposed model adopted a nonlinear failure model of deformation and energy dissipation derived with the low cycle fatigue theory in small plastic strain range and a linear failure model modified on the basis of Park-Ang damage model in large plastic strain range. By combining these two stages,the model could be used to describe the failure mechanism of steel members at different levels of plasticity. Low cycle fatigue tests were conducted for a group of steel members to verify the model. The results showed that the proposed model can well reflect the failure mechanism combining the effects of the first passage and the accumulated energy dissipation; it has significant theoretical and practical values for studying working states and damage mechanism of engineering structures subjected to strong wind or earthquake.
引文
[1]Park Y J,Ang A H S.Mechanistic seismic damage model for reinforced concrete[J].Journal of Structural Engineering,ASCE,1985,110(4):722-739.
    [2]Kumar S,Usami T.Damage evaluation in steel box columns by cyclic loading tests[J].Journal of Structure Engineering,1996,122(6):626-634.
    [3]欧进萍,牛荻涛,王光远.多层非线性抗震钢结构的模糊动力可靠性分析与设计[J].地震工程与工程振动,1990,10(4):27-37.OU Jin-ping,NIU Di-tao,WANG Guang-yuan.Fuzzy dynamical reliability analysis and design of multi-story nonlinear seismic steel strictures Earthquake Engineering and Engineering Vibration,1990,10(4):27-37.
    [4]刘伯权,白绍良,徐云中,等.钢筋混凝土柱低周疲劳性能的试验研究[J].地震工程与工程振动,1998,18(4):82-89.LIU Bo-quan,BAI Shao-liang,XU Yun-zhong.Experimental study of low-cycle behavior of concrete columns[J].Earthquake Engineering and Engineering Vibration,1998,18(4):82-89.
    [5]Kunnath S K K.Cumulative Seismic Damage of Reinforced Concrete Bridege Piers[R].University at Buffalo,State University of New York,NCEER Report:97-0006.
    [6]Coffin L F.The effect of frequency on high temperature lowcycle fatigue[C].In Proceedings of Air Force Conference on Fracture and Fatigue of Aircraft Structures.AFDL-TR-70-144,1970:301-312.
    [7]Miner M.Cumulative damage in fatigue[J].Trans ASME,1945,67:A159.
    [8]王东升,冯启民,王国新.考虑低周疲劳寿命的改进ParkAng地震损伤模型[J].土木工程学报,2004,37(11):41-49.WANG Dong-sheng,FENG Qi-min,WANG Guo-xin.A modified Park-Ang seismic damage model considering lowcycle fatigue life[J].China Civil Engineering Journal,2004,37(11):41-49.
    [9]FEMA356,prestandard and commentary for the Seismic Rehabilitation of Buildings[S].Federal Emergency Management Agency.Nov 1997.
    [10]金属材料轴向等幅低循环疲劳试验方法[S].北京:中国标准出版社,2008.06.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心