动力实测对周期折减系数的修正
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
选取5幢短肢剪力墙结构进行环境激励下的结构脉动响应实测,基于实测加速度响应,统计识别了结构的前三阶固有周期。分别采用Satwe和SAP2000对动力实测结果进行数值分析,结果表明,结构的计算周期(Tc)较实测周期(Tm)大。引起计算与实测周期差异(δi)的主要因素是填充墙对结构抗侧刚度的贡献,由于实测结构长、短轴方向的填充墙占比不同,相应于两个方向的δx和δy亦不同,δy均在10%以内,而δx普遍较大,最大值达到45.1%,此时不宜采用单一地震作用方向的周期折减系数进行结构双向的抗震设计。为此,通过进一步分析比较,提出应根据结构两正交轴向填充墙的实际布置情况,分别选取各自方向的周期折减系数进行二次地震作用分析,以同时达到安全性和经济性的双重抗震设计目标。
In-situ vibration measuring for 5 short-pier shearwall structures under ambient excitation was carried out.The first three order natural periods of the structures were identified statistically based on acquired acceleration responses data.Next,numerical models of the above 5 real structures were established by Satwe software and SAP2000 software,respectively.The eigenvalues analyzing results showed numerical simulation periods(Tc) were bigger than the in-situ measuring periods(Tm).Differences(δ) between Tc and Tm were caused mainly by the lateral stiffness contribution of infilled walls.In addition,δx and δycorresponding to the long and minor axis of the structures were asymmetric because the amounts of the infilled walls for two axis were not uniform.As a result,δy of all 5 buildings was within 10%,whereas,the maximum of δx was up to 35%.As far as for this condition,it is unreasonable when only single cycle reduction factor was used for bi-direction aseismic design.So it was suggested that based on the real arrangement of the infilled walls,the cycle reduction factor should be selected in each direction and analyzed twice for aseismic design goal.
引文
[1]卢亚琴,马克俭.周期折减系数对地震作用的影响[J].贵州大学学报,2011,28(1):101-107.
    [2]周靖,蔡健,方小丹.钢筋混凝土结构抗震强度折减系数的谱分析[J].华南理工大学学报,2006,34(2):100-106.
    [3]鄢定保,王广俊.对“高规”中结构自振周期折减系数取值的探讨[J].四川建筑,2009,29(6):107-111.
    [4]JGJ3—2010高层建筑混凝土结构技术规程[S].
    [5]宝志雯,来晋炎,陈志鹏.建筑物的脉动试验及其数据处理的方法[J].振动与冲击,1987(2):57-62.
    [6]宝志雯,陈志鹏.从建筑物的脉动响应确定其动力特性[J].深圳大学学报,1986(1):36-49.
    [7]李国强,陈素文.上海金茂大厦结构动力特性测试[J].土木工程学报,2000,33(2):35-39.
    [8]Suda D.,Satake Naoki.and Ono J.et al.Damping properties ofbuildings in Japan[J].Journal of Wind Engineering and IndustrialAerodynamics,1996,59:383-392.
    [9]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [10]Allan G.Piersol,Thomas L.Paez.Harris’Shock and VibrationHandbook(sixth edition)[M].New York:McGraw Hill Compa-nies,2010:501-549.
    [11]GB50009—2012建筑结构荷载规范[S].
    [12]北京金土木软件技术有限公司.SAP2000中文版使用指南[M].北京:人民交通出版社,2012:49-51.
    [13]中国建筑科学研究院建筑工程软件研所.PKPM多高层结构计算软件应用指南[M].北京:中国建筑工业出版社,2010:208-213.
    [14]GB50011—2010建筑抗震设计规范[S].

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心