高陡边坡组合式支挡结构大型振动台试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为研究上部采用锚索框架结构、下部设置为桩板墙的组合式支挡结构的抗震性能,开展了大型振动台模型试验。通过输入不同强度大瑞波测试了组合结构的加速度响应和动土压力响应,同时将动土压力的实测值与规范法、Mononobe-Okabe法(M-O法)的计算值进行了对比研究。研究表明:(1)组合式支挡结构在不同强度地震动激励下水平向和竖直向加速度沿坡高有不同程度的放大,且输入的激振加速度幅值越大,放大效应越明显;(2)组合式支挡结构下部桩板墙墙后的动土压力强度随激振加速度幅值的增大而增大,沿着墙高呈现出上部小、下部大的分布特性;(3)动土压力强度的计算,在低烈度区使用规范法和M-O法是合理的,但在高烈度区需要对规范法和M-O法进行修正。
In order to study the aseismic behavior of the compound supporting structure which is composed of frame structure of anchor cable in the upper part and sheet pile wall in the lower part,the large-scale shaking table model test is carried out.By imputting Darui wave excitations of different intensities,acceleration response and dynamic earth pressure response of compound supporting structure are investigated.Test results of dynamic earth pressure are compared with that calculated by code method and Mononobe-Okabe method(M-O method).The results show that:(1) The horizontal and vertical accelerations are magnified differently along the height of compound supporting structure under the seismic excitations with different intensities;and acceleration amplification effect increases with the increase of peak excitation acceleration.(2) The dynamic earth pressure increases with the increase of peak excitation acceleration at the back of sheet pile wall which is the lower part of the compound supporting structure;and the distribution of dynamic earth pressure along the wall height is small in the upper part and large in the lower part.(3) The current methods including code method and M-O method for calculation of dynamic earth pressure are reasonable in low intensity seismic area,but they need to be modified in high intensity seismic area.
引文
[1]KOSEKI J,MUNAF Y,TATSUOKA F.Shaking and tilttable tests of geosynthetic reinforced soil andconventional-type retaining walls[J].GeosyntheticsInternational,1998,5(1):73-96.
    [2]WATANBE K,MUNAF Y,KOSEKI J.Behaviors ofseveral types of model retaining walls subjected toirregular excitation[J].Soils and Foundations,2003,143(5):13-27.
    [3]PRAKASH S.Soil dynamics[M].New York:Mo GrawHill,1981.
    [4]KAWAMURA M,KURIBAYASHI E.Effect ofinstructions on dynamic active earth pressures[C]//Proceedings of the Third International Conference on SoilDynamics and Earthquake Engineering,Tokyo:[s.n.],1987.
    [5]朱桐浩,郑素璋,兰永珍.模拟地震荷载作用重力式挡土墙土压力的模型试验[J].四川建筑科学研究,1983,(1):35-37.
    [6]文畅平,杨果林.地震作用下挡土墙位移模式的振动台试验研究[J].岩石力学与工程学报,2011,30(7):1502-1512.WEN Chang-ping,YANG Guo-lin.Large-scale shakingtable tests study of seismic displacement mode ofretaining structures under earthquake loading[J].ChineseJournal of Rock Mechanics and Engineering,2011,30(7):1502-1512.
    [7]文畅平,杨果林.格构式框架护坡地震动位移模式的振动台试验研究[J].岩石力学与工程学报,2011,30(10):2076-2083.WEN Chang-ping,YANG Guo-lin.Shaking table modeltest study of seismic displacement mode of slope withanchor lattice frame structure[J].Chinese Journal ofRock Mechanics and Engineering,2011,30(10):2076-2083.
    [8]焦方辉,姚令侃,蒋良潍,等.岩石场地重力式挡土墙地震土压力振动台实验研究[J].防灾减灾工程学报,2011,31(3):316-321.JIAO Fang-hui,YAO Ling-kan,JIANG Liang-wei,et al.Shaking table test study of seismic earth pressure ofgravity retaining wall on rock site[J].Journal of DisasterPrevention and Mitigation Engineering,2011,31(3):316-321.
    [9]OKABE S.General theory on earth pressure and seismicstability of retaining wall and dam[J].Journal of theJapan Society of Civil Engineers,1924,10(6):1277-1323.
    [10]铁道第一勘察设计院.GB50111-2006铁路工程抗震设计规范[S].北京:中国计划出版社,2006.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心