原生各向异性地基条件下条形基础动力试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地震液化现象一直是土动力学的一个热门研究课题,前期研究表明由砂土颗粒之间接触的法向分布和颗粒形状所引起的原生各向异性对砂土动力学特性有影响。而现有的液化判别方法没有考虑砂土的原生各向异性,使得地震对上部结构的影响很难准确的评价。本研究通过制作专门设计的离心机模型箱控制砂土的不同沉积方向,模拟地基的原生各向异性,并且通过6个离心机振动模型试验再现了砂土原生各向异性对条形基础和地层的动力学特性的影响,包括对条形基础的加速度、水平位移、地层加速度、沉降和超孔隙水压力的影响。与前期的无条形基础的研究结果相似,尤其在饱和情况下,砂土的原生各向异性对条形基础的动力学特性影响非常大,加速度和超孔隙水压力表明,沉积方向为90°的地基使得条形基础的破坏较为严重,引发严重的地表沉降和基础的水平残余位移。为了更加准确预测结构物在地震区的动力特性,工程勘察和设计人员应考虑地基原生各向异性对结构物的影响。
Seismic Liquefaction is a hot topic in soil dynamics.Some past researches show that fabric anisotropy of sandy soil due to normal distribution of contact and particle shape may affect its dynamic characteristic.To explore the effects of fabric anisotropy on dynamic response of the superstructure and its ground,six centrifuge tests were performed on scaled model with different directions of sandy soil deposition to simulate its anisotropy and could reproduce the influences of fabric anisotropy on dynamic characteristics of strip foundation and ground,including accelerations and horizontal displacements of the strip foundation,accelerations,subsidence and excess pore water pressure of the ground.It was concluded that fabric anisotropy greatly influenced the dynamic characteristics of strip foundation and ground especially in the saturation case.The liquefaction resistance of model in 90°deposition direction is lower than those of other models from observation of acceleration and pore pressure evolution,which were indicated by serious subsidence and residual horizontal displacement of the ground.It is recommended that in order to precisely predict the dynamic performance of structure in earthquake area,the effect of fabric anisotropy on dynamic response of ground should be incorporated in the site investigation.
引文
[1]Oda.M Initial fabrics and their relation to mechanicalproperties of granular material[J].Soil and Founda-tions,1972,12(1):17—36.
    [2]Meyerhof G G.Bearging capacity of anisotropic cohe-sionless soil[J].Canadian Geotechnical Journal,1978,15(4):592—595.
    [3]Tobita Y.Fabric tensors in constitutive equations forgranular materials[J].Soils and Foundations,1989,29(4):99—104.
    [4]Bathurst R J,Rothenburg L.Observation on stressforce fabric relationships in idealized granular material[J].Mechanics of Material,1990,9(1):65—80.
    [5]Santamarina J C,Cho G C.Soil behavior:the role ofparticle shape[A].Advances in Geotechnical Engi-neering:the Skempton Conference[C].R J JAR-DINE,D M POTTS,K G HIGGINS,EDS.,ThomasTelford,London,2004,Vol.1:604—617.
    [6]宋飞,张建民,刘超.各向异性砂土K0试验研究[J].岩土力学,2010,31(12):3727—3735.Song Fei,Zhang Jianmin,Liu Chao.Experimentalstudy of K0of anisotropic sand[J].Rock and Soil Me-chanics,2010,31(12):3 727—3 735.
    [7]宋飞,张建民.考虑侧向变形的各向异性砂土土压力试验研究[J].岩石力学与工程学报,2009,28(9):1 884—1 895.Song Fei,Zhang Jianmin.Experimental study of earthpressure for anisotropic sand considering lateral dis-placement[J].Chinese Journal of Rock Mechanics andEngineering,2009,28(9):1 884—1 895.
    [8]Simpson B Tatsuoka.Geotechnics:the next 60years[J].Geotechnique,2008,58(5):357—368.
    [9]Vaid Y P,Fisher J M,Kuerbis R H.Particle grada-tion and liquefaction[J].ASCE,Journal of Geotechni-cal Engineering,1990,116(4):689—703.
    [10]Yang Z,Elgamal A.Influence of permeability on lique-faction-induced shear deformation[J].Journal ofGeotechnical and Geoenvironmental Engineering,2002,128(7):720—729.
    [11]Li B,Zeng X,Min H.Seismic responses of a retainingwall with anisotropic backfill[A].ASCE,Earth Re-tention 2010[C].GSP.208:688—695.
    [12]李博,王艳茹,Zeng X.地震作用下各向异性地基的动力响应-离心机模型试验研究[J].自然灾害学报,2013,22(2):205—212.Li Bo,Wang Yanru,Zeng Xiangwu.Dynamic re-sponse of anisotropic foundation under earthquake:ex-perimental research on centrifuge model[J].Journal ofNatural Disasters,2013,22(2),205—212.
    [13]Li B.Effect of fabric anisotropy on the dynamic me-chanical behavior of granular materials[D].Depart-ment of Civil Engineering,Case Western Reserve Uni-versity,2011.
    [14]Kawai T,Kanatani M.Seismic performance of a cais-son type seawall with an armored embankment[A].Proceedings,Centrifuge 98[C].351—358.
    [15]Behringer R P,Daniels K E,Majmudar T S,et al.Fluctuations,correlations and transitions in granularmaterials:statistical mechanics for a non-conventionalsystem[J].Phil.Trans.R.Soc.A,2008,366:493—504.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心