框架-摇摆墙结构阻尼优化设计方法研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
摇摆墙体与主体框架之间存在较大的竖向变形,可于此变形集中部位增设耗能构件,实现保护主体结构的基本损伤机制。提出附加阻尼的框架-摇摆墙结构,并基于等效线性化理论初步计算结构仅附加单一类型阻尼器的阻尼置放量,而后通过定义目标函数,确定可使目标函数最小的同时附加粘滞阻尼与金属阻尼的阻尼器布置方式,得到结论如下:1于弯剪型结构,当仅考虑结构加速度控制时,可沿结构总高布置粘滞阻尼器,而需综合考虑结构楼层位移、加速度时及层间位移角时,可于结构2/3处下部安装金属阻尼器,与其上部1/3处安装粘滞阻尼器;2于剪切型结构,当仅考虑结构层间位移角时,可于结构楼层1/2处下部安装金属阻尼器,与其上部1/2处安装粘滞阻尼器,而需综合考虑结构楼层位移、加速度及层间位移角时,则可于结构1/3处下部安装金属阻尼器,与其上部2/3处安装粘滞阻尼器。
For a large vertical displacement between a frame and a rocking wall,energy consumption components should be added to protect the main structure. Based on this,a frame-rocking wall structure with additional damping was proposed and single type of damper amount also could be calculated with the equivalent linearization theory,by defining the objective function,the best dampers layout of structure with viscous dampers and metal damper making the minimum value of the objective function could be determined. The conclusions were as follows:( 1) for a shear-bending structure,the viscous dampers can be arranged along the total height of the structure when only acceleration is considered; the metal dampers can be arranged at the lower 1 /3 part of the structure while the viscous dampers can be arranged at the upper 1 /3part of the structure when displacement,acceleration and storey drift are considered;( 2) for a shear structure,the metal dampers can be arranged at the lower half part while the viscous damper can be arranged at the upper half part when only storey drift is considered; in addition,the metal dampers can be arranged at the lower 2 /3 part while the viscous dampers can be arranged at the upper 1 /3 part when displacement,acceleration and storey drift are all considered.
引文
[1]Ajrab J J,Pekcan G,Mander J B.Rocking wall-frame structures with supplemental tendon systems[J].Journal of Structural Engineering,2004,130(6):895-903.
    [2]Panian L,Steyer M,Tipping S.Post-tensioned concrete walls for seismic resistance-an innovative approach to earthquake safety and concrete construction in buildings[J].Journal of the Post-tensioning Institute,2007,5(1):7-16.
    [3]Marriott D,Pampanin S,Bull D,et al.Dynamic testing of precast,post-tensioned rocking wall systems with alternative dissipating solutions[J].Bulletin of the New Zealand Society for Earthquake Engineering,2008,41(2):90-103.
    [4]Wada A,Qu Z,Ito H,et al.Seismic retrofit using rocking walls and steel dampers[C]//ATC&SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures.San Francisco,US:ASCE,2009:1010-1021.
    [5]Wada A,Uchiyama Y,Motoyui S,et al.Seismic retrofit of existing RC building with rocking wall:part 1:retrofit plan and steel damper experiment[C]//Summaries of Technical Papers of Annual Meeting.Tokyo:Architectural Institute of Japan,2010,C-2:623-624.
    [6]曹海韵,潘鹏,叶列平,等.混凝土框架摇摆墙结构体系的抗震性能分析[J].建筑科学与工程学报,2011,28(1):64-69.CAO Hai-yun,PAN Peng,YE Lie-ping,et al.Seismic performance analysis of RC frame rocking-wall structure system[J].Journal of Architecture and Civil Engineering,2011,28(1):64-69.
    [7]曹海韵,潘鹏,叶列平.基于推覆分析的混凝土框架摇摆墙结构抗震性能分析[J].振动与冲击,2011,30(11):240-244.CAO Hai-yun,PAN Peng,YE Lie-ping.Pushover analysis of RC frame rocking wall structure[J].Journal of Vibration and Shock,2011,30(11):240-244.
    [8]潘鹏,曹海韵,叶列平,等.混凝土框架增设摇摆墙前后抗震性能比较[J].土木工程与环境工程,2010,32(s2):326-328.PAN Peng,CAO Hai-yun,YE Lie-ping.Seismic performance analysis of RC frame with rocking-wall[J].Journal of Civil,Architectural&Environmental Engineering,2010,32(s2):326-328.
    [9]日本隔震构造协会.被动减震结构设计施工手册[M].北京:中国建筑工业出版社,2008.
    [10]裴星洙,王维,王星星.基于能量原理的隔震结构地震响应预测法研究[J].工程力学,2011,28(7):65-72.PEI Xing-zhu,WANG Wei,WANG Xing-xing,Earthquake response prediction of isolated structures based on energy principle[J].Engineering Mechanics,2011,28(7):62-75.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心