600MW超临界循环流化床锅炉控制系统研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
超临界600 MW循环流化床(circulating fluidized bed,CFB)机组具有更复杂的锅炉特性,因此超临界循环流化床机组的控制系统对于锅炉的安全与稳定运行具有重要的意义,其中控制策略是控制系统的核心与难点。CFB炉膛内存储的即燃碳燃烧是CFB锅炉燃烧发热量的主导因素,是造成CFB锅炉燃烧比煤粉炉滞后的主要原因。文中通过机理分析构造CFB锅炉的即燃碳模型,估算了某台600 MW超临界CFB锅炉炉膛内即燃碳量。将该状态量应用于锅炉的给煤控制、给水控制、送风控制系统中,提高了机组负荷的动态响应特性,稳定机组的主蒸汽压力、主蒸汽温度等参数。实践验证了所提控制策略和所构造模型的有效性。
The 600 MW supercritical circulating fluidized bed(CFB) unit has a significant character with more complex boiler properties. So the control system of supercritical CFB unit has important significance for the safe and stable for the boiler, and the control strategy is the core and difficulty of control system. Burning carbon in the CFB furnace is the dominant factor. It is the main reason causing more combustion lag than the pulverized coal fired boiler. This paper analyzed the mechanism structure model of burning carbon in the boiler and estimated the burning carbon storage capacity in a 600 MW supercritical CFB boiler furnace. The state quantity was applied in the boiler for the coal control, the feed water control,and the wind control. It improves the dynamic response characteristics of load, and the same time can stable the main steam pressure and the main steam temperature. The practice proves the effectiveness of the proposed control strategies and the structure models.
引文
[1]周星龙,程乐鸣,夏云飞,等.600 MW循环流化床锅炉水冷壁和中隔墙传热特性[J].中国电机工程学报,2014,32(2):225-230.Zhou Xinglong,Cheng Leming,Xia Yunfei,et al.Heat transfer characteristic of water wall and partition wall in a600 MW CFB Boiler[J].Proceedings of the CSEE,2014,32(2):225-230(in Chinese).
    [2]吕俊复,张缦,杨海瑞,等.简约型660 MW超超临界循环流化床锅炉设计开发[J].中国电机工程学报,2014,34(5):741-747.LüJunfu,Zhang Man,Yang Hairui,et al.Conceptual design of a simplified 660 MW ultra-supercritical circulating fluidized bed boiler[J].Proceedings of the CSEE,2014,34(5):741-747(in Chinese).
    [3]吕俊复,于龙,张彦军,等.600 MW超临界循环流化床锅炉[J].动力工程,2007,27(4):497-501.LüJunfu,Yu Long,Zhang Yanjun,et al.A 600 MW supercritical circulating fluidized bed boiler[J].Journal of Power Engineering,2007,27(4):497-501(in Chinese).
    [4]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1998:178-195.Cen Kefa,Ni Mingjiang,Luo Zhongyang,et al.Design and operation theory of circulating fluidized bed boiler[M].Beijing:China Electric Power Publishing House,1998:178-195(in Chinese).
    [5]蒋敏华,肖平.大型循环流化床锅炉技术[M].北京:中国电力出版社,2009:72-95.Jiang Minhua,Xiao Ping.Large-scale circulating fluidized bed boiler technology[M].Beijing:China Electric Power Publishing House,2009:72-95(in Chinese).
    [6]卢啸风.大型循环流化床锅炉设备与运行[M].北京:中国电力出版社,2006:126-135.Lu Xiaofeng.Large circulating fluidized bed boiler Equipment and operation[M].Beijing:China Electric Power Publishing House,2006:126-135(in Chinese).
    [7]马素霞,杨献勇.循环流化床锅炉燃烧系统的动态特性研究[J].中国电机工程学报,2006,26(9):1-6.Ma Suxia,Yang Xianyong.Study of dynamic behavior of the combustion system of a circulating fluidized bed boiler[J].Proceedings of the CSEE,2006,26(9):1-6(in Chinese).
    [8]赵伟杰,张文震,冯晓露.循环流化床锅炉床温的控制特性[J].动力工程,2007,27(4):545-610.Zhao Weijie,Zhang Wenzhen,Feng Xiaolu.Bed temperature control characteristics of CFB boilers[J].Journal of Power Engineering,2007,27(4):545-610(in Chinese).
    [9]四川白马300 MW循环流化床示范工程总结编委会.四川白马300 MW循环流化床示范工程总结[M].北京:中国电力出版社,2007:162-218.Sichuan Baima 300 MW Circulating Fluidized Bed Exampled Power Engineering Summary[M].Beijing:China Electric Power Publishing House,2007:162-218(in Chinese).
    [10]周星龙,程乐鸣,张俊春,等.六回路循环流化床颗粒浓度及循环流率实验研究[J].中国电机工程学报,2012,32(5):9-14.Zhou Xinglong,Cheng Leming,Zhang Junchun,et al.Experimental study on solids suspension density and solids circulating rate in a CFB with six circulating loops[J].Proceedings of the CSEE,2012,32(5):9-14(in Chinese).
    [11]岑可法,姚强,骆仲泱,等.燃烧理论与污染控制[M].北京:机械工业出版社,2004:283-315.Cen Kefa,Yao Qiang,Luo Zhongyang,et al.Combustion theory and Pollution control[M].Beijing:China Machine Press,2004:283-315(in Chinese).
    [12]华玉龙.循环流化床锅炉流动、传热和燃烧模型[D].湖北:华中科技大学,2005.Hua Yulon.Modeling and Simulation of Circulating Fluidized Bed Combustors Solid Segregation Radiative Heat Transfer and Coal Combustion[D].Hubei:Huazhong University of Science and Technology,2005(in Chinese).
    [13]杨海瑞,薛雷,郭远熊,等.循环流化床锅炉燃煤着火特性[J].燃烧科学与技术,2005,11(3):236-240.Yang Hairui,Xue Lei,Guo Yuanxiong,et al.Ignition characteristic of coal in CFB boiler[J].Journal of Combustion Science and Technology,2005,11(3):236-240(in Chinese).
    [14]李政,张巍,芶建兵,等.循环流化床锅炉动态仿真试验平台研制[J].清华大学学报,1999,39(3):100-102.Li Zheng,Zhang Wei,Gou Jianbin,et al.Development of dynamic simulation platform for CFBC boiler[J].Journal of Tsinghua University,1999,39(3):100-102(in Chinese).
    [15]李政,倪维斗,岳光溪,等.循环流化床复合压降数学模型[J].动力工程,1997,17(3):13-16.Li Zheng,Ni Weidou,Yue Guangxi,et al.The Compounded Pressure Drop Mathematical Model of Circulating Fluidized Bed Boilers[J].Journal of Power Engineering,1997,17(3):13-16(in Chinese).
    [16]朱国桢,徐洋.循环流化床锅炉设计与计算[M].北京:清华大学出版社,2004:132-138.Zhu Guozhen,Xu Yang.Design and calculation of circulating fluidized bed boiler[M].Beijing:Tsinghua University Press,2004:132-138(in Chinese).
    [17]孙献斌,黄中.大型循环流化床锅炉技术与工程应用[M].北京:中国电力出版社,2009:149-162.Sun Xianbin,Huang Zhong.Large circulating fluidized bed boiler technology and engineering application[M].Beijing:China Electric Power Publishing House,2009:149-162(in Chinese).
    [18]朱玉璧,程相利,陶新建,等.智能控制在锅炉燃烧优化中的应用[J].中国电机工程学报,2008,28(11):82-86.Zhu Yubi,Cheng Xiangli,Tao Xinjian,et al.Application of intelligent control in boiler combustion optimization[J].Proceedings of the CSEE,2008,28(11):82-86(in Chinese).
    [19]王超,程乐鸣,周星龙,等.600 MW超临界循环流化床锅炉炉膛气固流场的数值模拟[J].中国电机工程学报,2011,31(14):1-7.Wang Chao,Cheng Leming,Zhou Xinglong,et al.Numerical simulation of gas-solid hydrodynamics in a600 MW supercritical circulating fluidized bed boiler furnace[J].Proceedings of the CSEE,2011,31(14):1-7(in Chinese).
    [20]陈荻川.循环流化床锅炉燃烧系统动态特性辨识与炉膛发热量的软测量[D].上海:上海发电设备成套研究院,2010.Chen Dichuan.System Identification of Combustion System Dynamic Characteristic and Soft-Sensor of Furnace Heat Output of CFBB[D].Shanghai:Shang Hai Power Equipment Research Institute,2010(in Chinese).
    [21]路春美,王永征.煤燃烧理论与技术[M].北京:地震出版社,2001:249-282.Lu Chunmei,Wang Yong Zheng.Theory and technology of coal combustion[M].Beijing:Earthquake Press,2001:249-282(in Chinese).
    [22]La Nauze R D.Mass transfer considerations in fluidized combustion with particular reference to the influence of system pressure[J].Chemical Engineering Research and Design,1985,64(4):219-229.
    [23]高明明,刘吉臻,牛玉广,等.基于EKF技术的CFB残碳量估计[J].热能动力工程,2013,28(5):492-496.Gao Mingming,Liu Ji-zhen,Niu Yuguang,et al.Application of the Extended Kalman Filtering Technology in the Estimation of the Residual Carbon Content of a CFB Boiler[J].Journal of Engineering for Thermal Energy&Power,2013,28(5):492-496(in Chinese).
    [24]宋海英.浅析循环流化床机组的协调优化[C]//全国发电机组技术协作会.全国火电300 MW级机组能效对标及竞赛第39届年会论文集[C]//广州:全国发电机组技术协作会,2010:347-352.Song Haiying.Analysis on Coordination and Optimization of Circulating Fluidized Bed Boilers[C]//Guangzhou:The Whole Country Generator Technology Collaboration,2010:347-352(in Chinese).
    [25]吴玉平,王永龙.机跟炉协调控制在300 MWCFB锅炉煤质大幅波动时的应用[J].中国电力,2008,41(12):42-45.Wu Yuping,Wang Yonglong.Application of turbine following boiler coordinated control in 300 MWCFB boiler against the great change in coal quality[J].Electric Power,2008,41(12):42-45(in Chinese).
    [26]房方,刘吉臻.单元机组协调系统的非线性内模控制[J].中国电机工程学报,2004,24(4):195-199.Fang fang,Liu jizhen.Nonlinear internal model control for the boiler-turbine coordinate systems of power unit[J].Proceedings of the CSEE,2004,24(4):195-199(in Chinese).

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心