基于需求紧迫度的非线性连续消耗应急调度模型与算法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对非线性连续消耗应急物资调度中物资竞争和物资调度费用偏高问题,首先采用基于组合权重的改进灰色关联分析法,确定各个受灾点的物资需求紧迫度,并利用物资需求紧迫度设计了能够反映物资调度效果的物资缺失损失和满意度函数;其次以物资调度总费用最小化和受灾点满意度最大化为优化目标,构建了多受灾点、多出救点、多阶段、多目标的应急物资调度模型.针对该模型多目标的特点,将一种改进多目标粒子群算法(MOPSO)应用于基于Pareto最优解的多目标应急物资调度问题的求解,并通过模型对比实验和算法对比实验,验证了上述模型的合理性与算法的有效性.仿真结果表明,该模型与算法在优先供给需求紧迫度较高受灾点的同时,能够确保其他受灾点的物资供应时延是可接受的,并且获得了较高的满意度与较低的物资调度总费用.
In view of material competition and high cost problems in nonlinear continuous consumption emergency material dispatching,the urgency degree of a demand is confirmed using an improved gray relational method based on combination weighting( which is also used to design the disaster site satisfaction coefficient and lack of material loss coefficient). A multi-objective emergency material dispatching model is established for multiple disaster sites,multiple rescue points,and multiple stages,with an aim of minimizing the total dispatching cost and maximizing multiple disaster sites' satisfaction. In the light of these characteristics of the model,we propose an improved multi-objective particle swarm optimization algorithm based on Pareto dominance. The contrast test of the two models and the contrast test of the two algorithms verified the rationality of the model and the efficiency of the algorithm. Simulation results indicated that the model and algorithm obtained greater satisfaction and lower material dispatching cost,and ensured that disaster sites with higher degree obtained more emergency material and other disaster sites accepted the time delay of material supply.
引文
[1]何建敏,刘春林,尤海燕.应急系统多出救点的选择问题[J].系统工程-理论与实践,2001,21(11):89-93.He J M,Liu C L,You H Y.Selection of multi-depot in emergency systems[J].Systems Engineering-Theory&Practice,2001,21(11):89-93.
    [2]潘郁,余佳,达庆利.基于粒子群算法的连续性消耗应急资源调度[J].系统工程学报,2007,22(5):556-560.Pan Y,Yu J,Da Q L.Emergency resources scheduling on continuous consumption system based on particle swarm optimization[J].Journal of Systems Engineering,2007,22(5):556-560.
    [3]柴秀荣,王儒敬.多出救点、多物资应急调度算法研究[J].计算机工程与应用,2010,46(6):224-226.Chai X R,Wang R J.Research of emergency material dispatching algorithm based on multi-depot and multi-material[J].Computer Engineering and Applications,2010,46(6):224-226.
    [4]Sheu J B.An emergency logistics distribution approach for quick response to urgent relief demand in disasters[J].Transportation Research,Part E:Logistics and Transportation Review,2007,43(6):687-709.
    [5]Hu F H,Geng Z F.Research of multi-resource and multi-objective emergency scheduling based on fuzzy ideal point method[C]//Proceedings of the 2008 International Conference on Computational Intelligence and Security.Piscataway,NJ,USA:IEEE,2008:91-95.
    [6]宋晓宇,郑妍,常春光.基于变精度粗糙集的应急调度模型[J].信息与控制,2011,40(6):858-864.Song X Y,Zheng Y,Chang C G.A variable precision rough set based model for emergency scheduling[J].Information and Control,2011,40(6):858-864.
    [7]肖乐,甄彤,郭天池,等.基于蚁群算法的粮食应急调度问题研究[J].计算机工程,2011,37(20):10-15.Xiao L,Zhen T,Guo T C,et al.Research on grain emergency scheduling problem based on ant colony algorithm[J].Computer Engineering,2011,37(20):10-15.
    [8]王旭平,董莉,陈明天.考虑感知满意度的多受灾点应急资源分配模型[J].系统管理学报,2013,22(2):251-256.Wang X P,Dong L,Chen M T.Multiple-area post-disaster resource distribution model considering perception satisfaction[J].Journal of Systems&Management,2013,22(2):251-256.
    [9]庞海云,刘南,吴桥.应急物资运输与分配决策模型及其改进粒子群优化算法[J].控制与决策,2012,27(6):871-874.Pang H Y,Liu N,Wu Q.Decision-making model for transportation and distribution of emergency materials and its modified particle swarm optimization algorithm[J].Control and Decision,2012,27(6):871-874.
    [10]国家减灾委员会-科学技术部抗震救灾专家组.汶川地震灾害综合分析与评估[M].北京:科学出版社,2008:94-103.Earthquake Disaster Relief Experts Group of National Disaster Reduction Committee and Ministry of Science and Technology.The comprehensive analysis and assessment of the Wenchuan earthquake disaster[M].Beijing:Science Press,2008:94-103.
    [11]李柏年.多目标决策中客观性权重的一种确定法[J].运筹与管理,2002,11(5):36-29.Li B N.The method of determining the objective weight in multi-purpose decision[J].Operations Research and Management Science,2002,11(5):36-29.
    [12]Raquel C R,Jr Naval P C.An effective use of crowding distance in multiobjective particle swarm optimization[C]//Proceeding of Congress Evolutionary Compution.New York,USA:ACM Press,2005:257-264.
    [13]Coello C A,Pulido G T,Lechuga M S.Handling multiple objectives with particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):256-279.
    [14]Eberhart R C,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proceedings of the 2000 Conference on Evolutionary Computation.Piscataway,NJ,USA:IEEE,2000:84-88.
    [15]Deb K,Pratap A,Agarwal S,et al.A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    [16]Wei L,Wang S N,Zhao W.Methods to construct several kinds of concept lattices[C]//Proceedings of 2010 International Conference on Machine Learning and Cybernetics.Piscataway,NJ,USA:IEEE,2010:91-96.
    [17]Coello C A C,Lechuga M S.MOPSO:A proposal for multiple objective particle swarm optimization[C]//Proceedings of the 2002 Congress on Evolutionary Computation.Piscataway,NJ,USA:IEEE,2002:1051-1056.
    [18]Deb K,Jain S.Running performance metrics for evolutionary multi-objective optimization[R].Kanpur,Indian:Indian Institute of Technology Kanpur,2002.
    [19]Schott J R.Fault tolerant design using single and multi-criteria genetic algorithm optimization[M].Cambridge,MA,USA:Massachusetts Institute of Technology,1995.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心