砾石颗粒形状对砂砾土动剪切模量和阻尼比影响的试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
有效围压、固结比、含砾量和颗粒破碎对砂砾土动剪切模量和阻尼比影响的规律已有较丰富的研究成果,但有关颗粒形状影响的研究鲜见报道。利用英国GDS公司的扭剪仪,对级配相同的圆砾砂砾土和角砾砂砾土进行动三轴对比试验,研究相对密度为45%,不同围压下颗粒形状对砂砾土动剪切模量和阻尼比的影响,发现:有效围压大于300 k Pa或剪应变幅值大于7×10-4时,圆砾砂砾土比角砾砂砾土具有更大的动剪切模量;对于最大动剪切模量,圆砾砂砾土和角砾砂砾土均存在砾石(粒径大于5 mm)含量P5的一个阀值P5cr,且角砾砂砾土的砾石含量阀值P5cr较圆砾砂砾土的大,当P5为阀值P5cr时,砂砾土的最大动剪切模量达到极大值;剪应变幅值大于2×10-4时,角砾砂砾土的阻尼比比圆砾砂砾土的大。
The effects of effective confining pressure,consolidation ratio,gravel content and grain breakage on the shear modulus and damping ratio of gravel have been studied. However,only little work focused on the effect of the granule shape. Thus, the dynamic triaxial tests under different confining pressures were performed on the gravel specimens to investigate the effect of the granule shape on the shear modulus and damping ratio using a hollow cylinder apparatus(HCA), which is developed by GDS Instruments Ltd., United Kingdom. These specimens were made by two kinds of gravel(i.e.,with angular and round grains) with the same grain composition and relative density 45%. The results indicate that the gravel with the round shape has a higher shear modulus than that with the angular one when the confining pressure is higher than 300 k Pa or the shear strain amplitude is greater than 7×10-4. The gravel content(content of grains,whose diameter is bigger than 5 mm) corresponding to the maximum shear modulus is called the critical gravel content P5 cr,and the P5 cr of the angular sample is higherthan that of the round one. Conversely,the damping ratio of the angular sample is greater than that of the round one when the shear strain amplitude is larger than 2×10-4.
引文
[1]中国地质科学研究院.中华人民共和国地质图集地层简表[M].北京:地质出版社,1976:1–11(Chinese Academy of Geological Sciences.Geological atlas of peoples republic of China[M].Beijing:Geological Press,1976:1–11.(in Chinese))
    [2]郭庆国.粗粒土的工程应用[M].郑州:黄河水利出版社,1998:1–18.(GUO Qingguo.Engineering characteristics and application of coarse-grained soil[M].Zhengzhou:Yellow River Conservancy Press,1998:1–18.(in Chinese))
    [3]王爱萍,耿晔,金锦,等.张峰水库堆石坝料的动力特性研究[J].华北水利水电学院学报,2005,26(3):16–18.(WANG Aiping,GENG Ye,JIN Jin,et al.Study on dynamic characteristics of rock filling materials of Zhangfeng reservoir[J].Journal of North China Institute of Water Conservancy and Hydroelectric Power,2005,26(3):16–18.(in Chinese))
    [4]凌华,傅华,蔡正银,等.坝料动力变形特性试验研究[J].岩土工程学报,2009,31(12):1 920–1 924.(LING Hua,FU Hua,CAI Zhengyin,et al.Experimental study on dynamic deformation behaviors of dam materials[J].Chinese Journal of Geotechnical Engineering,2009,31(12):1 920–1 924.(in Chinese))
    [5]王汝恒,贾彬,邓安福,等.砂卵石土动力特性的动三轴试验研究[J].岩石力学与工程学报,2006,25(增2):4 059–4 064.(WANG Ruheng,JIA Bin,DENG Anfu,et al.Dynamic triaxial testing study on dynamic characteristics of sandy pebble soil[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(Supp.2):4 059–4 064.(in Chinese))
    [6]刘汉龙,杨贵,陈育民.筑坝反滤料动剪切模量和阻尼比影响因素试验研究[J].岩土力学,2010,31(7):2 030–2 034.(LIU Hanlong,YANG Gui,CHEN Yumin.Experimental study of factors influencing dynamic shear modulus and damping ratio of dam inverted filler[J].Rock and Soil Mechanics,2010,31(7):2 030–2 034.(in Chinese))
    [7]ROLLINS K M,EVANS M D,DIEHL N B,et al.Shear modulus and damping relationships for gravels[J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124(5):396–405.
    [8]HARDIN B O,KALINSKI M E.Estimating the shear modulus of gravelly soils[J].Journal of Geotechnical and Geoenvironmental Engineering,2005,131(7):867–875.
    [9]SAHAPHOL T,MIURA S.Shear moduli of volcanic soils[J].Soil Dynamics and Earthquake Engineering,2005,25(2):157–165.
    [10]常晓林,马刚,周伟,等.颗粒形状及粒间摩擦角对堆石体宏观力学行为的影响[J].岩土工程学报,2012,34(4):646–653.(CHANG Xiaolin,MA Gang,ZHOU Wei,et al.Influences of particle shape and inter-particle friction angle on macroscopic response of rockfill[J].Chinese Journal of Geotechnical Engineering,2012,34(4):646–653.(in Chinese))
    [11]刘东,谢婷蜓,马刚,等.颗粒形状对堆石体真三轴数值试验力学特性的影响[J].水电能源科学,2011,29(9):68–72(LIU Dong,XIE Tingting,MA Gang,et al.Numerical simulation of true triaxial test for behavior of rockfill based on grain shape[J].Water Resources and Power,2011,29(9):68–72.(in Chinese))
    [12]QIAN X,GRAY D,WOODS R.Voids and Granulometry effects on shear modulus of unsaturated sands[J].Journal of Geotechnical Engineering,1993,119(2):295–314.
    [13]MEIDANI M,SHAFIEE A,HABIBAGAHI G,et al.Granule shape effect on the shear modulus and damping ratio of mixed gravel and clay[J].Iranian Journal of Science and Technology,Transaction B,Engineering,2002,32(B5):501–518.
    [14]曹振中.汶川地震液化特征及砂砾土液化预测方法研究[博士学位论文][D].哈尔滨:中国地震局工程力学研究所,2010.(CAO Zhenzhong.Characteristics of soil liquefaction in great Wenchuan earthquake and procedures for gravelly soil liquefaction evaluation[Ph.D.Thesis][D].Harbin:Institute of Engineering Mechanics,China Earthquake Administration,2010.(in Chinese))
    [15]HARDIN B O,DRNEVICH V P.Shear modulus and damping in soils:design equations and curves[J].Journal of the Soil Mechanics and Foundations Division.,1972,98(7):667–692.
    [16]中华人民共和国国家标准编写组.GB/T50123—1999土工试验方法标准[S].北京:中国计划出版社,1999.(The National Standards Compilation Group of Peoples Republic of China.GB/T50123—1999Standard for soil test method[S].Beijing:China Planning Press,1999.(in Chinese))
    [17]中华人民共和国行业标准编写组.SL237—1999土工试验规程[S].北京:中国计划出版社,1999.(The Professional Standards Compilation Group of Peoples Republic of China.SL237—1999 Specification of soil test[S].Beijing:China Planning Press,1999.(in Chinese))
    [18]潘华,陈国兴.动态围压下空心圆柱扭剪仪模拟主应力轴旋转应力路径能力分析[J].岩土力学,2011,32(6):1 701–1 707.(PAN Hua,CHEN Guoxing.Analysis of capabilities of HCA to simulate stress paths for principal stress rotation under dynamic confining pressure[J].Rock and Soil Mechanics,2011,32(6):1 701–1 707.(in Chinese))
    [19]孙田,陈国兴,周恩全,等.深层海床粉质黏土动剪切模量和阻尼比试验研究[J].土木工程学报,2012,45(增1):9–14.(SUN Tian,CHEN Guoxing,ZHOU Enquan,et al.Experimental research on the dynamic shear modulus and the damping ratio of deep-seabed marine silty clay[J].China Civil Engineering Journal,2012,45(Supp.1):9–14.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心