超低硬度橡胶隔震支座水平力学性能相关性试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文目的是研究G值约为0.196MPa的超低硬度天然橡胶隔震支座(LNR)和铅芯橡胶隔震支座(LRB)的水平基本力学性能的各种相关性能变化规律。采用反复加载的试验方法研究了LNR及LRB支座剪切性能的水平剪应变相关性、压应力相关性和水平加载频率相关性、温度相关性、反复加载次数相关性、老化相关性、水平极限应变相关性。通过试验研究,分析了各种相关性因素对支座水平性能的影响,给出了主要相关性变化规律的拟合近似公式,并和有关文献的结果进行了比较。从各种相关性对支座水平性能影响程度来看,水平剪应变、竖向压应力、温度、频率对其有一定程度影响,而老化、反复加载次数、大变形对其影响有限。试验结果还表明,部分文献夸大了应变在低应变阶段对LNR水平刚度的影响,低估了其对LRB屈服后刚度和屈服强度在小应变和大应变阶段的影响。
The intention of this paper is to research the dependence of the horizontal fundamental mechanical property of LRB and LNR with shear modulus about 0. 196 MPa. The cyclic loading method was adopted and a series of tests were performed,which included shear strain dependence,compression dependence,loading frequency dependence,temperature dependence,repeated loading dependence,aging dependence and ultimate shear strain dependence. All kinds of dependence effects on the horizontal property of LNR or LRB were analyzed,some fitting formulas about those change rules were given after tests,and compared to the results of some literatures. Test results show that shear stain,vertical pressure,temperature,loading frequency have some influence on the horizontal mechanical property of LNR or LRB,but there is little effects on them for aging,repeated loading,ultimate shear strain. It also shows that shear strain effect on the horizontal stiffness of LNR at the stage of low strain has been overstated,but its effect on the post-yield stiffness and yield strength of LRB at the stage of small strain and large strain have been underestimated.
引文
[1]周福霖.工程结构减震控制[M].北京:地震出版社,1997:29-30.ZHOU Fulin.Earthquake energy absorbing control on engineering structure[M].Beijing:Seismological Press,1997:29-30.(in Chinese)
    [2]Pocanschia A,Phocasb M C.Earthquake isolator with progressive nonlinear deformability[J].Engineering Structures,2007,29:2586-2592.
    [3]Gordon P W,Andrew S.Whittaker.Vertical earthquake loads on seismic isolation systems in bridges[J].Journal of Structural Engineering,2008,134(11):1696-1704.
    [4]Ioannis V K,Michael C C.Principles of scaling and similarity for testing of lead-rubber bearings[J].Earthquake Engineering and Structural Dynamics,2010,39:1551-1568.
    [5]Ioannis V K,Michael C C,Andrew S W.Modeling strength degradation in lead-rubber bearings under earthquake shaking[J].Earthquake Engineering And Structural Dynamics.2010;39:1533-1549.
    [6]YANG Qiaorong,LIU Wenguang,He Wenfu,et al.Tensile stiffness and deformation model of rubber isolators in tension and tension-shear states[J].Journal of Engineering Mechanics,2010,Vol.136(4):429-437.
    [7]WU Bo,HAN Liwei,ZHOU Fulin,et al.Experimental study on fire resistance of building seismic rubber bearings[J].Journal of Structural Engineering,2011,Vol.137(12):1593-1602.
    [8]Milani G.,Milani F.Stretch-stress behavior of elastomeric seismic lsolators with different rubber materials:numerical insight[J].Journal of Engineering Mechanics,2012,Vol.138(5):416-429.
    [9]Jared W,Gordon P W.Stability of elastomeric and lead-rubber seismic isolation bearings[J].Journal of Structural Engineering,2012,Vol.138(2):215-223.
    [10]Donatello C,Giuseppe P.Critical load of slender elastomeric seismic isolators:an experimental perspective[J].Engineering Structures,2012,40:198-204.
    [11]HE Wenfu,LIU Wenguang,YANG Qiaorong,et al.Nonlinear rotation and shear stiffness theory and experiment research on rubber isolators[J].Journal of Engineering Mechanics,2012,Vol.138(5):441-449.
    [12]沈朝勇,崔杰,马玉宏,等.超低硬度隔震橡胶支座的竖向力学性能研究[J].地震工程与工程振动,2012,Vol.32(5):136-145.SHEN Chaoyong,CUI Jie,MA Yuhong,et al.Vertical mechanical property of elastomeric isolators with ultra-low hardness[J].Journal of Earthquake Engineering and Engineering Vibration,2012,Vol.32(5):136-145.(in Chinese)
    [13]ISO 22672-1 2005.Elastomeric seismic-protection isolators—Part 1:Test methods[S].Switzerland,2005.
    [14]Mashahiko H.,Shin O.Response control and seismic isolation of buildings[M].London and New York:Taylor&Francis.2006.
    [15]ISO 22672-3 2005.Elastomeric seismic-protection isolators—Part 3:Applications for buildings—Specifications[S].Switzerland,2005.
    [16]GB 20688.3 2006橡胶支座:第3部分:建筑隔震橡胶支座[S].Beijing,2006.GB 20688.3 2006 Rubber bearings:part 3:Elastometric Seismic Protection Isolators for Buildings[S].Beijing,2006.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心