煤层脉动水力压裂动静态响应数值模型及求解
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
煤层脉动水力压裂是一项大范围提高煤层渗透率的新技术,但针对脉动应力波在实际地层的传播、扰动规律研究较少。采用交错网格数高阶有限差分法,结合完全匹配层和准静态围压加载两种边界条件,建立了含围压无限大弹性地层脉动水力压裂动静态响应数值模型,并研究了不同加载方式、频率、振幅、围压条件下煤层最小主应力峰值分布规律。研究表明:由于应力波传播及干涉效应,相同围压、振幅条件下脉动压裂增透扰动区域远大于准静态压裂;煤层增透面积随震源频率和振幅的增加而增大,振幅需要克服由围压控制的启动压力才能产生增透区;增透面积与地层主应力成反相关且最小主应力起主导作用,其由3.5 MPa下降至2.0 MPa时,增透面积最高可提升600%。模型可模拟准静态和脉动加载下煤层的力学响应,其结果可为优化脉动水力压裂工艺参数提供指导。
Pulsating hydro-fracturing(PHF) is a new technique on substantially increasing permeability in coal seam. However, few studies have considered the stress propagation and distribution of PHF in real formation. Combining with perfectly matched layer(PML) absorptive boundary and quasi-static confining loading technique, staggered-grid high-order difference numerical method is used to establish a dynamic and static response numerical model in infinite elastic formation with confining pressure. The peak value distribution of minor principal stress is investigated with different loading styles, confining pressures, frequencies, and amplitudes. Numerical results indicate that the transmission and interference effect of stress wave are the dominant factors which make the permeability-enhanced area of PHF is much larger than that of conventional fracturing. The frequency and amplitude are directly proportional to the PHF effect, but only the amplitude overtops a threshold value controlled by confining pressure, the permeability-enhanced area can be brought; the confining pressure is inversely proportional to the PHF effect, and the second principal stress is the dominant factor. When the second principal stress decreases from 3.5 MPa to 2.0 MPa, the permeability-enhanced area will increase 600% at most. Based on this numerical model, the dynamic and static stress response of PHF and conventional fracturing can be investigated, and its results will provide guidance to optimize the PHF technological parameters.
引文
[1]罗平亚.关于大幅提高我国煤层气井单井产量的探讨[J].天然气工业,2013,33(6):1-6.LUO Ping-ya.A discussion on how to significantly improve the single well productivity of CBM gas wells in China[J].Natural Gas Industry,2013,33(6):1-6.
    [2]林柏泉,李子成,翟成,等.高压脉动水力压裂卸压增透技术及应用[J].采矿与安全学报,2011,28(3):452-455.LIN Bai-quan,LI Zi-cheng,ZHAI Cheng,et al.Pressure relief and permeability-increasing technology based on high pressure pulsating hydraulic fracturing and its application[J].Journal of Mining&Safety Engineering,2011,28(3):452-455.
    [3]翟成,李贤忠,李全贵.煤层脉动水力压裂卸压增透技术研究与应用[J].煤炭学报,2011,36(12):1996-2001.ZHAI Cheng,LI Xian-zhong,LI Quan-gui.Research and application of coal seam pulse hydraulic fracturing technology[J].Journal of China Coal Society,2011,36(12):1996-2001.
    [4]李贤忠,林伯泉,翟成,等.单一低透煤层脉动水力压裂脉动波破岩机制[J].煤炭学报,2013,38(6):918-923.LI Xian-zhong,LIN Bai-quan,ZHAI Cheng,et al.The mechanism of breaking coal and rock by pulsating pressure wave in single low permeability seam[J].Journal of China Coal Society,2013,38(6):918-923.
    [5]李全贵,林伯泉,翟成,等.煤层脉动水力压裂脉动参量作用特性的实验研究[J].煤炭学报,2013,38(7):1185-1190.LI Quan-gui,LIN Bai-quan,ZHAI Cheng,et al.Experimental study on action characteristic of pulsating parameters in coal seam pulse hydraulic fracturing[J].Journal of China Coal Society,2013,38(7):1185-1190.
    [6]符力耘,牟永光.弹性波边界元法正演模拟[J].地球物理学报,1994,37(4):521-528.FU Li-yun,MOU Yong-guang.Boundary element method for elastic wave forward modeling[J].Acta Geophysica Sinica,1994,37(4):521-528.
    [7]RESHEF M,KOSLOFF D,EDWARDS M,et al.Three dimensional elastic modeling by the Fourier method[J].Geophysics,1988,43(6):1099-1110.
    [8]KELLY K R,WARD R W,TREITEL S,et al.Synthetic seismograms:A finite-difference approach[J].Geophysics,1976,41(1):2-27.
    [9]孙卫涛.弹性波动方程的有限差分数值方法[M].北京:清华大学出版社,2009:39-46.
    [10]GRAVES R W.Simulating seismic wave propagation in3D elastic media using staggered-grid finite difference[J].Bulletin of the Seismological Society of America,1996,86(4):1091-1106.
    [11]董良国,马在田,曹景忠,等.一阶弹性波方程交错网格高阶差分解法[J].地球物理学报,2000,43(3):411-419.DONG Liang-guo,MA Zai-tian,CAO Jing-zhong,et al.A staggered-grid high-orderd difference method of one-order elastic wave equation[J].Chinese Journal of Geophysics,2000,43(3):411-419.
    [12]冯英杰,杨长春,吴萍.地震波有限差分模拟综述[J].地球物理学进展,2007,22(2):487-491.FENG Ying-jie,YANG Chang-chun,WU Ping.The review of the finite-difference elastic wave motion modeling[J].Progress in Geophysics,2007,22(2):487-491.
    [13]董良国.弹性波数值模拟中的吸收边界条件[J].石油地球物理勘探,1999,34(1):45-56.DONG Liang-guo.Absorptive boundary condition in elastic-wave numerical modeling[J].Oil Geophysical Prospecting,1999,34(1):45-56.
    [14]曾联波,田崇鲁.构造应力场与低渗气田开发[J].石油勘探与开发,1998,25(3):91-93.ZENG Lian-bo,TIAN Chong-lu.Tectonic stress field and the development of low permeability oil fields[J].Petroleum Exploration and Development,1998,25(3):91-93.
    [15]刘喜武.弹性波场论基础[M].青岛:中国海洋大学出版社,2008:151-156.
    [16]郦正能,张继奎.工程断裂力学[M].北京:北京航空航天大学出版社,2012:11-17.
    [17]WHITTAKER B N,SINGH R N,SUN GEXIN.Rock fracture mechanics principles design and applications[M].Amsterdam:Elsevier,1992:93-101.
    [18]盛美萍,王敏庆,孙进才.噪声与振动控制结束基础[M].北京:科学出版社,2001:38-42.
    [19]吴百烈.煤层气井水力压裂几何参数优化设计[D].青岛:中国石油大(华东),2011.
    [20]赵振保.变频脉冲式煤层注水技术研究[J].采矿与安全学报,2008,25(4):486-489.ZHAO Zhen-bao.Study of technology of variablefrequency pulse water[J].Journal of Mining&Safety Engineering,2008,25(4):486-489.
    [21]李波,张景松,姚宏章,等.高压脉动水力锤击煤层注水技术研究[J].矿业安全与环保,2011,38(2):14-16,19.LI Bo,ZHANG Jing-song,YAO Hong-zhang,et al.Study of high pressure pulsation hydraulic hammer on coal seam affusion[J].Mining Safety&Environmental Protection,2011,38(2):14-16,19.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心