冻融循环作用后再生混凝土砖墙体抗震性能试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为研究冻融循环对砌体结构抗震性能的影响,评估在役砌体结构的抗震能力,对再生混凝土砖墙体进行了冻融循环后低周反复加载试验和有限元模拟分析,对比分析了墙体的破坏过程与特征、承载力与刚度退化、延性、耗能。结果表明:经冻融循环作用后的再生混凝土砖墙体的破坏模式与未经冻融作用墙体略有不同,主要表现为初裂缝出现较早,且发展更为迅速,裂缝多集中于砖块与砂浆的胶结面处,主斜裂缝发展伴有更多的微裂缝出现,破坏程度相对严重;而未经冻融作用墙片裂缝大多沿砖块延伸;随着冻融循环次数的增加,墙体的受剪承载力、刚度、变形与耗能均有所降低;当达到120次冻融循环时,墙体的承载力下降30%左右,初始刚度降低约40%,累计耗能降低约70%,斜向拉伸变形下降80%。
Behavior of four recycled concrete brick( RCB) wall models under freeze-thaw cycles was investigated by low cycle reversed loading test and FEA,in order to study on the effect of freeze-thaw cycles on seismic behavior of RCB wall and assess the capacity of existing masonry building. Failure modes of RCB walls were described,meanwhile shear capacity,stiffness,ductility and hysteretic energy were analyzed. It indicates that the failure modes of RCB walls under freeze-thaw cycles are different from intact ones in terms of the earlier occurrence and faster development of cracks. The cracks of walls under freeze-thaw cycles mainly take place in the interface between brick and mortar,especially for the development of main cracks accompanied with more micro-crack and show worse damage. However the cracking of intact walls is in the brick. Shear strength,stiffness,deformation and hysteretic energy of RCB walls decline with the increase of freeze-thaw cycles. The ultimate capacity,initial stiffness,energy dissipation and tensile deformation reduces by over 30%,40%,70% and 80% respectively when freeze-thaw cycles reach 120.
引文
[1]周斌.混凝土普通砖砌体力学性能及墙片抗震性能试验研究[D].武汉:武汉理工大学,2007.(ZHOU Bin.Experimental study on mechanical properties of concrete common brick masonry and seismic performance of the wall[D].Wuhan:Wuhan University of Technology,2007.(in Chinese))
    [2]郭俊杰.足尺混凝土小型空心砌块墙体抗震性能试验研究[D].北京:清华大学,2005.(GUO Junjie.Experimental research on seismic behavior of smallsized hollow concrete block full-sized wall[D].Beijing:Tsinghua University,2005.(in Chinese))
    [3]韩春.蒸压粉煤灰砖柱与墙体抗震性能的试验研究[D].西安:西安建筑科技大学,2009.(HAN Chun.Experimental research on the behavior of brick masonry column and the seismic behavior of autoclaved fly ash brick masonry walls[D].Xi’an:Xi’an University of Architecture and Technology,2009.(in Chinese))
    [4]马俊元.混凝土多孔砖砌体抗剪及墙体抗震性能研究[D].上海:同济大学,2009.(MA Junyuan.Research on the shear performance and seismic behavior of concrete perforated brick masonry[D].Shanghai:Tongji University,2009.(in Chinese))
    [5]GB 50203—2011砌体结构工程施工质量验收规范[S].北京:中国建筑工业出版社,2011.(GB50203—2011 Code for acceptance of constructional quality of masonry structures[S].Beijing:China Architecture&Building Press,2011.(in Chinese))
    [6]ASTM C67-14 Standard test methods for sampling and testing brick and structural clay tile[S].West Conshohocken,PA:American Society for Testing and Materials(ASTM),2007.
    [7]JGJ/T 70—2009建筑砂浆基本性能试验方法标准[S].北京:中国建筑工业出版社,2009.(JGJ/T70—2009 Standard for test method of basic properties of construction mortar[S].Beijing:China Architecture&Building Press,2009.(in Chinese))
    [8]GB/T 50082—2009普通混凝土长期性能和耐久性能试验方法标准[S].北京:中国建筑工业出版社,2009.(GB/T 50082—2009 Standard for test methods of long-term performance and durability of ordinary concrete[S].Beijing:China Architecture&Building Press,2009.(in Chinese))
    [9]牟道灿.砌体结构抗地震倒塌能力分析[D].重庆:重庆大学,2012:29-35.(MU Daocan.Analysis on the collapse resistant capacity of masonry structure under earthquake[D].Chongqing:Chongqing University,2012:29-35.(in Chinese))
    [10]杨卫忠.砌体受压本构关系模型[J].建筑结构,2008,38(10):80-82.(YANG Weizhong.Constitutive relationship model for masonry materials in compression[J].Building Structure,2008,38(10):80-82.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心