颤振冷挤压振动台设计与振动特性研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对冷挤压成形过程中变形抗力大、易产生挤压不充分的问题,设计了一种新型颤振冷挤压振动台.利用ANSYS软件建立了有限元分析模型,分析确定了振动台安全有效的工作方式,研究了输入油压、振动台加载、弹性端盖凹槽中心半径、弹性端盖凹槽开口高度、弹性端盖凹槽开口圆弧半径等五项振动台振幅影响因素与振幅的数值关系及敏感度,建立了输入-输出的仿真二元插值模型,并通过实验修正模型.实验结果表明:冷挤压过程中振动台振幅共有五个阶段,修正后的模型能有效仿真振动台振幅.研究结果表明:所设计的振动台满足颤振冷挤压成形需要,通过改变振幅影响因素能改善振动台振动特性.
To reduce the problems of large resistance to deformation and inadequate extrusion,a new flutter vibration platform of cold extrusion was designed.Finite element analysis model was established with ANSYS,the safe and effective working way of the vibration platform was analyzed and determined,the sensitivity and the relationship between five factors of amplitude of the vibration platform such as input oil pressure,loaded on vibration platform,radius of groove center of elastic end cover,groove opening height of elastic end cover,the radius of circular arc groove openings of elastic end cover and amplitude values was researched,the bivariate interpolation model of input-output is established and be validated by experiments. The experimental results indicate that the amplitude of the vibration platform during the cold extrusion process is divided into five phases,and prove that the bivariate interpolation model can simulates amplitude of the vibration platform effectively.Experimental research proves the designed the vibration platform meets the need of flutter cold extrusion forming,and changing amplitude factors can improve vibration characteristics of the vibration platform.
引文
[1]周贤宾.塑性加工技术的发展—更精、更省、更净[C]//第八届全国塑性加工学术年会论文集.北京:北京航空航天大学板料冲压成形研究中心,2002:1-4.
    [2]YAO Zhehe,KIM G Y,FAIDLEY L A,et al.Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting[J].Journal of Materials Processing Technology,2012,212(3):640-646.
    [3]CRISTINA B,GRACIOUS N.Influence of ultrasonic vibration on micro-extrusion[J].Ultrasonics,2011,51(5):606-616.
    [4]何勍,闻邦椿.振动塑性加工的进展及若干问题[J].辽宁工学院学报,1999(4):5-9.
    [5]韩清凯,郝建山,闻邦椿.金属材料加工中的振动利用问题[J].中国机械工程,2001,12(5):594-597.
    [6]谢涛,齐海群,张俊.超声振动拉丝实验研究[J].中国机械工程,2006,17(3):224-226.
    [7]LANGENECKER B.Effects of ultrasound on deformation characteristics of metals[J].IEEE Transactions on Sonics and Ultrasonics,1996,13:1-8.
    [8]MASAO M,MASAHIKO J.The utility of radially and ultrasonically vibrated dies in the wire drawing process[J].Materials Processing Technology,2001,113:81-86.
    [9]韩意斌,俞浙青,阮健,等.新型高频电液激振器[J].液压与气动,2007(7):67-69.
    [10]邹正佳,李胜,阮健,等.2D数字伺服阀的动态特性试验研究[J].浙江工业大学学报,2011,39(4):430-432.
    [11]邢彤,阮健.高频电液颤振发生器:中国,ZL101858373[P].2010-10-13.
    [12]杨庆华,陈鑫,孟彬,等.汽车活塞销振动挤压数值模拟分析[J].浙江工业大学学报,2013,43(3):318-320.
    [13]金杰,赵良奎,樊敏娜.喷雾罐顶盖塑性成形过程分析[J].浙江工业大学学报,2012,40(5):584-586.
    [14]胡子非,毛华杰.可轴向振动挤压模体精锻过程中振幅影响的数值模拟[J].热加工工艺,2007,36(13):78-81.
    [15]张彦敏,张学宾,龚红英,等.有限元在金属塑性成形中的应用[M].北京:化学工业出版社,2010.
    [16]陈国兴,左熹,王志华,等.地铁车站结构近远场地震反应特性振动台试验[J].浙江大学学报,2010,44(10):1956-1961.
    [17]何文斌,曾攀,林峰,等.40 MN钢丝缠绕多向模锻液压机机架有限元模态分析[J].锻压技术,2011,36(2):18-21.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心