煤矿井下控制水力压裂煤层增透关键技术及应用
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了减少低透气性煤层瓦斯抽采钻孔工程量和提高瓦斯抽采效率,对低透气性煤层增透理论及技术应用进行了研究,基于煤层控制水力压裂概念,开发了煤矿井下水力压裂数值模拟与优化设计软件,提出了高承压上向孔和近水平孔的封堵方法,形成了压裂水分布范围探测关键技术,并进行现场应用。结果表明,通过定点定向定区域压裂实现了目标区域煤层的增透,控制水力压裂前后相比单孔瓦斯抽采量提高了5倍以上,部分工作面瓦斯抽采钻孔工程量减少了1/3,采掘工作面单产单进大幅提高,煤矿井下控制水力压裂是对常规水力压裂技术的改进和创新,能有效促进目标区域煤层增透、提高瓦斯治理效果。
In order to reduce an engineering quantity of the gas drainage borehole in low permeability seam and to improve the gas drainage efficiency,a study was conducted on the permeability improvement theory and technology application in a low permeability seam.Based on the controlled hydraulic fracturing conception of the seam,a hydraulic fracturing numerical simulation in the underground mine and the optimized design software were developed and a sealing method of a high pressurized upward borehole and horizontal borehole was provided.Thus the key technology to detect the fracturing water distribution scope was developed and the site application was conducted.The results showed that with a target,orientation and regional fracturing to realize a permeability improvement of the target regional seam,in comparison with the before and after the controlled hydraulic fracturing,the single borehole gas drainage volume was improved over five times,the gas drainage borehole engineering workload was reduced by 1 / 3 in some coal mining face,a single day coal production and driving rate of the gateway driving face was highly improved.The controlled hydraulic fracturing in the underground mine was an improvement and innovation of the conventional hydraulic fracturing technology and could effectively promote the seam permeability improvement in the target region and could improve the gas control effect.
引文
[1]赵伟.我国煤与瓦斯突出事故现状及防治对策[J].煤炭科学技术,2014,42(6):15-18.
    [2]肖知国,王兆丰,陈立伟.煤层高压注水防治煤与瓦斯突出效果考察及机理分析[J].河南理工大学学报:自然科学版,2010,29(3):287-292.
    [3]张希宇.水力割缝防止掘进工作面瓦斯突出的机理研究[D].太原:太原理工大学,2012.
    [4]王志磊,王凯,梁安民.“三软”突出煤层穿层钻孔水力压裂增透抽采瓦斯技术研究[J].煤炭技术,2014,33(5):34-36.
    [5]程远平,刘洪永,赵伟.我国煤与瓦斯突出事故现状及防治对策[J].煤炭科学技术,2014,42(6):15-18.
    [6]段银鹿,李倩,姚韦萍.水力压裂微地震裂缝监测技术及其应用[J].断块油气田,2013,20(5):644-648.
    [7]林柏泉,孟杰,宁俊,等.含瓦斯煤体水力压裂动态变化特征研究[J].采矿与安全工程学报,2012,29(1):106-110.
    [8]葛兆龙,梅绪东,卢义玉,等.煤矿井下水力压裂钻孔封孔力学模型及试验研究[J].岩土力学,2014,35(7):1907-1913,1920.
    [9]姜秀雷,孟杰,陈延可,等.水力压裂影响范围数值模拟研究[J].煤矿安全,2013,44(2):3-6.
    [10]陈鹏.Ⅰ、Ⅱ类高煤阶煤水力压裂参数优化及软件发开[D].焦作:河南理工大学,2012.
    [11]薛莉莉.煤层气储层压裂数值模拟技术研究[D].青岛:中国石油大学(华东),2009.
    [12]贾利春,陈勉,金衍.国外页岩气井水力压裂裂缝监测技术进展[J].天然气与石油,2012,30(1):44-47.
    [13]沈大富,郭臣业,覃乐,等.煤矿井下控制水力压裂增透与瓦斯抽采关键技术研究及应用[R].重庆:重庆市能源投资集团科技有限责任公司,2014.

版权所有:© 2021 中国地质图书馆 中国地质调查局地学文献中心