小应变下舟山海相软土动剪切模量与阻尼比试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以舟山海域海底原状海相软土为研究对象,利用GDS共振仪对各深度范围土样在不同围压下进行了一系列动力试验,得到了各深度范围土样在不同围压下动剪切模量和阻尼比随动剪切应变的变化趋势。试验结果表明:1×10-6~1×10-2应变范围内深度对舟山海相软土动剪切模量和阻尼比的影响不太明显;随着动剪应变的增加,动剪切模量逐渐衰减,阻尼比逐渐增大;围压对动剪切模量比G/Gmax和阻尼比D/Dmax的影响比较明显,围压越大G/Gmax越大,阻尼比D/Dmax越小。通过理论分析采用修正的Hardin-Drnevich模型给出其归一化动剪切模量比和阻尼比随剪应变变化关系曲线,并且给出了舟山海域海相软土G/Gmax和D的推荐值以及与规范值、袁晓铭推荐值加以比较。试验及分析结果加深了对舟山海域海相软土动力特性的认识,也进一步为海洋底盘工程建设提供了可靠的动力学参数。
This paper presents the research results of undisturbed marine soft soil samples from Zhoushan areas.The index properties of the marine soils from the sampling areas are reviewed.The dynamic properties of these marine soil samples retrieved from different depths are tested by the resonant column method under various confining pressures.The resultant shear modulus and damping ratios with relation to the various magnitudes of dynamic shear strains(1x10-6~1x10-2)are obtained.The results indicate that,within the variation range of dynamic shear strains between 1x10-6 and 1x10-2,the sampling depth has minimal influence on the dynamic shear modulus and dynamic damping ratio;with the increase of dynamic shear strain,the dynamic shear modulus decreases and the damping ratio increases;the confining pressure has an obvious effect on both the ratio of dynamic shear modulus G/Gmax and the damping ratio D/Dmax,that is,the large the confining pressure is,the higher value of G/Gmax and the smaller of D/Dmax.The normalized dynamic shear modulus ratio and the damping ratio with related to the dynamic shear strain are obtained based on the theoretical analysis with the modified Hardin-Drevich model.These values are compared with the code recommended values as well as the values recommended by Yuan.These test results provide a better understanding of the dynamic properties of the Zhoushan marine soils.
引文
[1]陈国兴,刘雪珠,朱定华,等.南京新近沉积土动剪切模量比与阻尼比的试验研究呢[J].岩土工程学报,2006(8):1023-1027.
    [2]王志杰,骆亚生,王瑞瑞,等.不同地区原状黄土动剪切模量与阻尼比试验研究[J].岩土工程学报,2010,32(9):1463-1469.
    [3]蔡慧腾,金星.福州市区粉质黏土动剪切模量与阻尼比试验研究[J].土木工程学报,2011,44(增刊):109-113.
    [4]齐剑峰,栾茂田,杨庆,等.饱和黏土动剪切模量与阻尼比的试验研究[J].岩土工程学报,2008,30(4):518-523.
    [5]吕悦军,唐荣余,沙海军.渤海海底土类动剪切模量比和阻尼比试验研究[J].防灾减灾工程学报,2003,23(2):35-42.
    [6]叶俊能,陈斌.海相沉积软土动强度与孔压特性试验研究[J].岩土力学,2011,32(增刊1):55-60.
    [7]孙田,陈国兴,周恩全,等.深层海床粉质黏土动剪切模量和阻尼比试验研究[J].土木工程学报,2012,45(增刊1):9-14.
    [8]孙田,陈国兴,周恩全,等.琼州海峡100m以浅海洋土动剪切模量比和阻尼比试验研究[J].岩土工程学报,2013,35(增刊2):375-382.
    [9]王振红,潘永坚,潘国富,等.舟山-岱山间西部海域第四纪海底沉积物物理力学指标统计分析[J].海洋通报,2011,30(5):557-561.
    [10]王亚军,金峰,张楚汉,等.舟山海域海相砂土循环激振下的液化破坏孔压模型[J].岩石力学与工程学报,2013,32(3):582-597.
    [11]杨芳.水泥土小应变动力特性试验研究[J].工业建筑,2013,43(4):102-106.
    [12]HARDIN B O,DRNEVICHV P.Shear modulus and damping in soils:design equation and curves[J].Journal of Soil Mechanics and Foundation Division,ASCE,1972,98(7):667–692.
    [13]DARENDELI M B.Development of a new family of normalized moduli reduction and material damping curves[Ph.D.Thesis][D].Austin:University of Texas at Austin,2001.
    [14]DB 001-1994.工程场地地震安全性评价工作规范[M].北京:地震出版社,1994.
    [15]袁晓铭,孙锐,孙静,等.常规土类动剪切模量比和阻尼比试验研究[J].地震工程与工程震动,2000,20(4):133-139.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心