新疆马尔洋地区泥石流遥感信息提取及危险性评价
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
遥感和地理信息技术已成为泥石流、滑坡等地质灾害快速调查和危险性评价的关键技术。文章以新疆西昆仑山脉西段马尔洋地区为研究区,在充分收集、研究前人资料和有效利用其他信息源的基础上,基于ETM+遥感影像和DEM数据,通过地形起伏度、沟谷密度、沟谷线和坡度等地形特征和植被覆盖度的计算,判读了研究区的泥石流灾害点信息。在此基础上,选取了合适的泥石流灾害危险性评价指标,利用层次分析法确定了各个评价因子的权重,对研究区泥石流危险性做了评价。评价的结果为一般危险性占23.20%,中度危险性占29.82%,而高度及极度危险性占47.98%,表明该地区为泥石流高度危险性易发育区。
Remote sensing and geographic information system have become key technologies for quick survey and hazard assessment of geological disasters such as mudflows and landslides etc.. In this case study on Maeryang area in the West Kunlun mountain of Xinjiang,the mudflow hazard information was interpreted by calculating terrain features such as terrain ruggedness,gully density,valley line,slope,etc. and vegetation coverage by using ETM data,remote sensing images and DEM data,on the basis of effective use of previous research data and other information. On that basis,some indices of risk evaluation of mudflows hazard were selected,and the weighting of each evaluation indices was determined by using analytical hierarchy process. Finally,the mudflow hazard was evaluated.The evaluation result is as followings: general dangerous area accounting for 23. 20%,moderate risk area accounting for 29. 82%,and the most and the extreme dangerous area accounting for 47. 98%. This study result shows that the study region is in the highly dangerous mudflows development area.
引文
[1]Temesgen B,Mohammed M U,Korme T.Natural hazard assessment using GIS and remote sensing methods,with particular reference to the landslides in the Wondogenet area,Ethiopia[J].Physics and Chemistry of the Earth,Part C:Solar,Terrestrial&Planetary Science,2001,26(9):665-675.
    [2]Hervás J,Barredo J I,Rosin P L,et al.Monitoring landslides fromoptical remotely sensed imagery:the case history of Tessina landslide,Italy[J].Geomorphology,2003,54(1):63-75.
    [3]Danneels G,Pirard E,Havenith H B.Automatic landslide detection from remote sensing images using supervised classificationmethods[C]//Geoscience and Remote Sensing Symposium,IGARSS 2007.IEEE International,2007:3014-3017.
    [4]唐川,朱静.城市泥石流风险评价探讨[J].水科学进展,2006,17(3):383-388.
    [5]王涛,马寅生,龙长兴,等.四川汶川地震断裂活动和次生地质灾害浅析[J].地质通报,2008,27(11):1913-1922.
    [6]原璟,赵萍,徐舒扬,等.基于GIS的皖南地区泥石流危险性评价研究[J].无线电工程,2014,44(3):50-53.
    [7]张怀珍,范建容,胡凯衡,等.汶川地震重灾区泥石流沟内崩滑物空间分布的RS-GIS定量方法[J].山地学报,2012,30(1):78-86.
    [8]史奋伟.基于地图代数的地貌因子的提取[D].西安:长安大学,2009.
    [9]李洪涛.DEM和ARCGIS在土地整理中的应用研究[D].阜新:辽宁工程技术大学,2009.
    [10]Rouse Jr J W,Haas R H,Schell J A,et al.Monitoring vegetationsystems in the Great Plains with ERTS[J].NASA special publication,1974,(351):309.
    [11]元伟涛,王瑞燕,修洪敏,等.黄河三角洲垦利县生态环境敏感性评价[J].水土保持通报,2010(6):214-218.
    [12]高斌.吉林省中小企业产业选择的AHP模型及其应用[J].东北师大学报自然科学版,2004,36(4):134-138.
    [13]梁京涛.遥感和GIS在汶川地震灾区地质灾害调查与评价中的应用研究[D].成都:成都理工大学,2009.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心