细粒土液化判别特征指标研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
中国液化判别方法形成于20世纪80年代,30年来无实质改进。对于细粒土液化判别方法,1999年土耳其Kocaeli地震和台湾集集地震后,国外研究人员做了大量工作。在前人工作基础上,重点研究细粒土液化判别式和初判条件特征指标。通过回顾唐山、海城地震液化场地细粒土土性特征,结合土耳其Kocaeli地震和台湾集集地震液化数据,详细对比国内外细粒土液化判别方法优缺点。结果表明:1塑性指数不宜作为液化判别式指标;2综合细粒含量与黏粒含量判别液化比单独使用任一指标要更为合理;3中国规范液化判别式对细粒土过于保守,尤其只针对粉土考虑黏粒含量导致更为保守,建议去掉"砂土黏粒含量取3"的规定;4黏粒含量不宜作为初判条件指标;5对细粒土的塑性指数,7度、8度和9度分别不小于10,13和15,可判为不液化土。
The methods for estimating soil liquefaction in China were basically established in the 1980 s, and they have not substantially improved thence. Following the 1999 Kocaeli and 1999 Chi-Chi Earthquakes, considerable efforts on liquefaction discrimination methods for fine-grained soils have been done by overseas researchers. Referring to previous studies on fine-grained soil liquefaction, indices in SPT-based formula and prelimilary discrimination criteria are specifically analyzed.Reviewing the soil characteristics of liquefaction data from the 1975 Haicheng, 1976 Tangshan, 1999 Kocaeli and Chi-Chi Earthquakes, the advantages and limitations of the existing liquefaction discrimination methods for fine-grained soils are comparatively analyzed. The results show that:(1) Plasticity index should not be used as an index in SPT-based formula.(2)Applying the combination of fine content and clay content to estimate liquefaction potential is more reliable than using either index alone.(3) Chinese code method is much conservative for fine-grained soils, especially considering clay fraction only for the soils with fine content greater than 50%.(4) Clay content should not be used as an index in prelimilary discrimination criteria.(5) The fine-grained soils with plasticity index not less than 10, 13 and 15 corresponding to seismic intensities 7, 8 and9 respectively will not liquefy.
引文
[1]汪闻韶.土液化特性中的几点发现[J].岩土工程学报,1980,2(3):55–63.(WANG Wen-shao.Some findings in soil liquefaction[J].Chinese Journal of Geotechnical Engineering,1980,2(3):55–63.(in Chinese))
    [2]钟龙辉.轻亚黏土地震液化判定方法的分析[J].岩土工程学报,1980,2(3):113–122.(ZHONG Long-hui.Analysis for evaluating liquefaction of low plasticity clays(CL)during earthquake[J].Chinese Journal of Geotechnical Engineering,1980,2(3):113–122.(in Chinese))
    [3]SEED H B,TOKIMATSU K,HARDER L F,et al.The influence of SPT procedures in soil liquefaction resistance evaluations[J].Journal of Geotechnical Engineering,1985,111(12):1425–1445.
    [4]SEED H B,IDRISS I M,ARANGO I.Evaluation of liquefaction potential using field performance data[J].Journal of Geotechnical Engineering,1983,109(3):458–482.
    [5]ZHOU S G.Soil liquefaction during recent major earthquakes in China and aseismic design method related to soil liquefaction[C]//Proc 8th Asian Regional Conference on SM&FE.Kyoto,1987:249–250.
    [6]BOULANGER R W,MEJIA L H,IDRISS I M.Liquefaction at moss landing during Loma Prieta earthquake[J].Journal of Geotechnical and Geoenvironmental Engineering,1997,123(5):453–467.
    [7]BOULANGER R W,MEYERS M W,MEJIA L H,et al.Behavior of a fine-grained soil during the Loma Prieta Earthquake[J].Canadian Geotechnical Journal,1998,35(1):146–158.
    [8]SEED R B,CETIN K O,MOSS R E S,et al.Recent advances in soil liquefaction engineering,a unified and consistent framework[R].California:Earthquake Engineering Research Center,2003.
    [9]BRAY J D,SANCIO R B,DURGUNOGLU T,et al.Subsurface characterization at ground failure sites in Adapazari,Turkey[J].Journal of Geotechnical and Geoenvironmental Engineering,2004,130(7):673–685.
    [10]STEWART J P,CHU D B,LEE S,et al.Liquefaction andnonliquefaction from 1999 Chi-Chi,Taiwan,earthquake[C]//Advancing Mitigation Technologies and Disaster Response for Lifeline Systems:Proc 6th U.S.Conference on Lifeline Earthquake Engineering.Long Beach,2003:1021–1030.
    [11]PRAKASH S,SANDOVAL J A.Liquefaction of low plasticity silts[J].Soil Dynamics and Earthquake Engineering,1992,11(7):373–379.
    [12]GUO T,PRAKASH S.Liquefaction of silts and silt-clay mixtures[J].Journal of Geotechnical and Geoenvironmental Engineering,1999,125(8):706–710.
    [13]刘恢先.唐山大地震震害[M].北京:地震出版社,1989.(LIU Hui-xian.The Great Tangshan Earthquake of 1976[M].Beijing:Seismic Press,1989.(in Chinese))
    [14]高大钊.岩土的分类与鉴别[M]//岩土工程手册.北京:中国建筑工业出版社,1994.(GAO Da-zhao.Classification and identification of rock and soil[M]//Geotechnical Engineering Manual.Beijing:China Architecture and Building Press,1994.(in Chinese))
    [15]PRAKASH K,SRIDHARAN A.Critical appraisal of the cone penetration method of determining soil plasticity[J].Canadian Geotechnical Journal,2006,43(8):884–888.
    [16]MITCHELL J K.Fundamentals of soil behavior[M].1st ed.New York:John Wiley and Sons,Inc,1976.
    [17]HWANG J H,YANG C W.Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data[J].Soil Dynamics and Earthquake Engineering,2001,21:237–257.
    [18]GB50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.(GB0011—2010 Code for seismic design of buildings[S].Beijing:China Architecture and Building Press,2010.(in Chinese))
    [19]谢君斐.关于修改抗震规范砂上液化判别式的几点意见[J].地震工程与工程振动,1984,4(2):95–126.(XIE Jun-fei.Some comments on the formular estimating the liquefaction of sand in revised aseismic design code[J].Journal of Earthquake Engineering and Engineering Vibration,1984,4(2):95–126.(in Chinese))
    [20]衡朝阳,何满潮,裘以惠.含黏粒砂土抗液化性能的试验研究[J].工程地质学报,2001,9(4):339–344.(HENG Chao-yang,HE Man-chao,QIU Yi-hui.Experimental study of liquefaction-resistance characteristics of clayey Sand[J].Journal of Engineering Geology,2001,9(4):339–344.(in Chinese))
    [21]中国科学院工程力学研究所.海城地震震害[M].北京:地震出版社,1979.(Institute of Engineering Mechanics,Chinese Academy of Sciences.Haicheng earthquake-induced damages[M].Beijing:Seismic Press,1979.(in Chinese))
    [22]唐大雄.关于塑性图的探讨[J].岩土工程学报,1981,3(2):77–81.(TANG Da-xiong.Discussion about the plasticity chart[J].Chinese Journal of Geotechnical Engineering,1981,3(2):77–81.(in Chinese))
    [23]BOULANGER R W,IDRISS I M.Evaluating the potential for liquefaction or cyclic failure of silts and clays[R].Davis:University of California,2004.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心