加装金属减震装置的1000kV避雷器振动台试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为研究用于电气设备金属减震器的力学性能和减震效果,进行了单个减震装置的拉压循环加载试验和加装减震装置的1 000 kV避雷器振动台试验。试验结果显示金属减震装置的本构关系符合Wen模型,表现出良好的耗能特性。在地震台试验中,减震装置的应用使设备基频从1.61 Hz降低至1.22 Hz,阻尼比由1.73%增大至4%,改善了设备的动力特性。在0.4×9.8 m/s2等级地震荷载下设备应力为22.6 MPa,安全系数为2.0,减震装置对应力的减震率达60%,显著提高了设备的地震安全性。金属减震装置通过金属芯体的塑性变形耗散地震动能量,减小地震响应从而提高了设备的抗震性能,为1 000 kV电气设备应用于我国高抗震设防烈度区提供了技术支撑。
In order to study the mechanical properties and damping effect of metal damper device used for electrical equipment, we carried out cyclic loading tests of single damper device and shaking table tests of a 1 000 kV surge arrester with metal dampers. The test results show that the constitutive relation of the metal damper conforms to the Wen hysteresis model, reflecting a high energy dissipation capacity. In the shaking table tests, the application of metal damper decreases fundamental frequency of the equipment from 1.61 Hz to 1.22 Hz and increases the damping ratio from 1.73% to 4%, which shows improvement in dynamic properties of the equipment. Under 0.4×9.8 m/s2 level seismic load, the stress of the equipment is 22.6 MPa, the safety factor is 2.0, and the stress decreasing rate of the damper device is as high as 60%, which significantly improve the safety of the equipment in earthquake events. Metal damper device dissipates earthquake energy by plastic deformation of the metal core, which decreases seismic response of equipment and achieves a better seismic performance. The results provide technical supports for the installation of 1 000 kV voltage level electrical equipment in high seismic intensity zone in China.
引文
[1]程永锋,朱全军,卢智成.变电站电力设施抗震措施研究现状与发展趋势[J].电网技术,2008,32(22):84-89.CHENG Yongfeng,ZHU Quanjun,LU Zhicheng.Progress and development trend on seismic measures of electric power equipments in transformer substation[J].Power System Technology,2008,32(22):84-89.
    [2]柳春光,李光华,林均岐.电力供应系统地震安全分析与控制对策研究[J].地震工程与工程振动,2010,30(3):147-153.LIU Chunguang,LI Guanghua,LIN Junqi.Research on seismic security and control measures of power supply systems[J].Journal of Earthquake Engineering and Engineering Vibrations,2010,30(3):147-153.
    [3]李西育,党镇平.特高压支柱瓷绝缘子弯曲强度可靠性分析[J].电瓷避雷器,2013(2):17-23.LI Xiyu,DANG Zhenping.Bending strength reliability analysis of the post porcelain insulator for UHV[J].Insulators and Surge Arresters,2013(2):17-23.
    [4]Howard M,AndréF.Seismic qualification and requirements for transformer bushings[R].California,USA:Pacific Earthquake Engineering Research Center,2003:55-70.
    [5]Dohwan K.Evaluation and protection of high voltage electrical equipments against severe shock and vibrations[D].New York,USA:The State University of New York at Buffalo,2010:41-61.
    [6]Muhammad F.Seismic evaluation and qualification of transformer bushings[D].New York,USA:The State University of New York at Buffalo,2013:20-48.
    [7]李圣,钟铁毅,张常勇.基于概率地震需求分析的铅芯橡胶支座抗震性能研究[J].振动与冲击,2013,32(7):48-53.LI Sheng,ZHONG Tieyi,ZHANG Changyong.Aseismic performance of LRB based on probabilistic seismic demand analysis[J].Journal of Vibration and Shock,2013,32(7):48-53.
    [8]Flora L,Torben S.Verification of the effectiveness of TMDs using wind tunnel section model tests[J].Journal of Wind Engineering and Industrial Aerodynamics,1996,64(2):161-170.
    [9]Makris N,Constantinou M C.Viscous damper:testing modeling and application in vibration of seismic isolation[R].New York,USA:The State University of New York at Buffalo,1990.
    [10]卢智成,代泽兵,曹枚根,等.电气设备减震体系抗震设计方法的研究[J].武汉大学学报,2010,43(增刊):187-190.LU Zhicheng,DAI Zebing,CAO Meigen,et al.Study of method for aseismic design of electrical equipments with vibration absorbing system[J].Engineering Journal of Wuhan Univeristy,2010,43(Supplement):187-190.
    [11]Wen Y K.Method for random vibration of hysteretic systems[J].Journal of Engineering Mechanics,1976,102(2):249-263.
    [12]Song J,Der Kiureghian A.Generalized Bouc-Wen model for highly asymmetric hysteresis[J].Journal of Engineering Mechanics,2006,132(6):610-618.
    [13]Computer and Structures Inc.Analysis reference manual for SAP2000,ETABS and SAFE[M].California,USA:Computers and Structures Inc,2009:256-260.
    [14]律方成,黄华,刘云鹏,等.风洞模拟自然横风条件下绝缘子带电积污特性[J].高电压技术,2014,40(5):1281-1289.LüFangcheng,HUANG Hua,LIU Yunpeng,et al.Contamination depositing characteristics of insulators under natural crosswind conditions with wind tunnel simulation[J].High Voltage Engieering,2014,40(5):1281-1289.
    [15]黄新波,赵隆,周柯宏,等.采用惯性传感器的输电导线舞动监测系统[J].高电压技术,2014,40(5):1312-1319.HUANG Xinbo,ZHAO Long,ZHOU Kehong,et al.Conductor galloping monitoring system based on inertial sensor for transmission lines[J].High Voltage Engieering,2014,40(5):1312-1319.
    [16]程永锋,邱宁,卢智成,等.硬管母线连接的1 000 kV避雷器和电容电压式互感器抗震性能振动台试验[J].高电压技术,2014,40(12):3882-3887.CHENG Yongfeng,QIU Ning,LU Zhicheng,et al.Shake table test on seismic performance of 1 000 kV arrester and capacitor voltage transformer interconnected by tube bus[J].High Voltage Engineering,2014,40(12):3882-3887.
    [17]GB 50260—2013电力设施抗震设计规范[S].北京:中国计划出版社,2013.GB 50260—2013 Code for seismic design of electrical installations[S].Beijing,China:China Planning Press,2013.
    [18]IEEE Std 693TM—2005 IEEE recommended practice for seismic design of substations[S],2005.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心