钢质埋地管线在不同场地走滑断层下的可靠性研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
断层是造成埋地管线破坏的最重要原因。简化埋地管线小变形段为等效边界弹簧,对管材为三折线本构模型的等效边界弹簧本构方程进行了推导。基于ANSYS软件的有限元概率设计系统,考虑了管线外径、壁厚、内压、埋深及走滑断层位错量等随机输入变量,运用蒙特卡罗方法进行了软土、中等土、硬土3种场地走滑断层位错作用下钢质埋地管线的可靠性分析。研究发现:管线应变和失效概率随场地硬度提高显著增大,而应力增大不明显;三种场地走滑断层位错作用下,对应变的敏感性从高到底依次为走滑断层位错量、壁厚、埋深、内压。研究完善和丰富了该方面理论,为埋地管线抗震设计提供了一些合理且经济的建议。
Fault movements represent the most severe earthquake effects on buried pipeline. The small deformation section of pipeline is simplified as an equivalent boundary spring,and its constitutive equation is deduced for trilinear constitutive model of pipe materials. Based on the finite element probabilistic design system provided by ANSYS software,the reliability analysis of buried steel subjected to strike-slip fault is performed in soft,general and hard soil sites by Monte Carlo method considering the random input variables,including diameter and thickness of pipeline,internal pressure,buried depth and displacement of strike-slip faults. It is found that with the increase of site hardness,the strain and the failure probability of pipeline increase significantly,but the stress does not increase obviously. The sensitivity analysis indicates that the influential degrees of the parameters on the strain from high to low are displacement of strike-slip faults,thickness of pipeline,buried depth and internal pressure in three different sites. The research improves the theory of this aspect,and provides some reasonable and economic advice for seismic design of buried pipeline.
引文
[1]SY/T0450-2004输油(气)钢质管道抗震设计规范[S].2004.SY/T0450-2004 Code for Seismic Design of Oil and Gas Steel Pipeline[S].2004.(in Chinese)
    [2]Kennedy R P,Chow A W,Williamson R A.Fault movement effects on buried oil pipeline[J].Transportation Engineering Journal,1977,103.
    [3]冯启民,郭恩栋.跨断层埋地管道抗震试验[J].地震工程与工程振动,2000,20(1):56-62.FENG Qiming,GUO Endong.A seismic test of buried pipe crossing fault[J].Earthquake Engineering and Engineering Dynamics,2000,20(1):56-62.(in Chinese)
    [4]Yasuda S,Kishino H,Yoshizaki K,et al.Countermeasures of buried steel pipes against surface fault rupture[C]//The 13th World Conference on Earthquake Engineering,Vancouver,BC,Canada,2004.
    [5]Abdoun T H,Ha D,O’Rourke M J,et al.Factors influencing the behavior of buried pipelines subjected to earthquake faulting[J].Soil Dynamics and Earthquake Engineering,2009,29(3):415-427.
    [6]Kim J,Lynch J P,Michalowski R L,et al.Experimental study on the behavior of segmented buried concrete pipelinessubject to ground movements[C]∥The 16th International Symposium on:Smart Structures and Materials&Nondestructive Evaluation and Health Monitoring.International Society for Optics and Photonics,2009:729419-729419-10.
    [7]Ha D,Abdoun T H,O'Rourke M J,et al.Earthquakefaulting effects on buried pipelines-case history and centrifuge study[J].Journal of Earthquake Engineering,2010,14(5):646-669.
    [8]Newmark N M,Hall W J.Pipeline design to resist large fault displacement[C]∥Proceedings of US National Conference on Earthquake Engineering,Ann Arbor,1975:416-425.
    [9]Kennedy R P,Chow A W,Williamson R A.Fault movement effects on buried oil pipeline[J].Transportation Engineering Journal of the American Society of Civil Engineers,1977,103(5):617-633.
    [10]Wang L R L,Yeh Y H.A refined seismic analysis and design of buried pipeline for fault movement[J].Earthquake Engineering and Structural Dynamics,1985,13(1):75-96.
    [11]Wang L L R,Wang L J.Parametric study of buried pipelines due to large fault movement[J].ASCE,TCLEE,1995,6:152-159.
    [12]刘爱文.基于壳模型的埋地管线抗震分析[D].北京:中国地震局地球物理研究所,2002.LIU Aiwen.Response analysis of a buried pipeline crossing the fault based on shell-model[D].Beijing:Institute of Geophysics,China Seismological Bureau,2002.(in Chinese)
    [13]李小军,侯春林,赵雷,等.考虑压缩失效时埋地管线跨地震断层的最佳交角研究[J].应用基础与工程科学学报,2006,14(2):203LI Xiaojun,HOU Chunlin,ZHAO Lei,et al.Study on the best crossing angle between pipeline and fault considering compression failure of pipe[J].Journal of Basic Science and Engineering,2006,14(2):203-209.(in Chinese)
    [14]Liu M,Wang Y Y,Yu Z.Response of pipelines under fault crossing[C]//Proceedings of the International Offshore and Polar Engineering Conference.Vancouver,BC,Canada:International Society of Offshore and Polar Engineers.2008:162-165.
    [15]Vazouras P,Karamanos S A,Dakoulas P.Finite element analysis of buried steel pipelines under strike-slip faultdisplacements[J].Soil Dynamics and Earthquake Engineering,2010,30(11):1361-1376.
    [16]Bolvardi V,Bakhshi A.A study on seismic behavior of buried steel pipelines crossing active faults[C].ASCE,2010.
    [17]袁昕,姜彤.实用ANSYS在桥梁建设装备结构分析中的应用[M].郑州;黄河水利出版社,2009.YUAN Xin,JIANG Tong.The application of ANSYS in the bridge construction equipment structure[M].Zhengzhou:The Yellow River Water Conservancy Press,2009.(in Chinese)
    [18]Nyman D J.Guidelines for the seismic design of oil and gas pipeline systems[S].USA:ASCE,1984.
    [19]常士骠,张苏民.工程地质手册[M].北京:中国建筑工业出版社,2007.CHANG Shibiao,ZHANG Sumin.Manual of engineering geology[M].Beijing:China Architecture and Building Press,2007.(in Chinese)
    [20]张红兵.化工管路手册[M].北京:化学工业出版社,1988.ZHANG Hongbing.Chemical piping manual[M].Beijing:Chemistry Industry Press,1988.(in Chinese)
    [21]API Spec 5L-2004管线钢管规范[S].2004.API Spec 5L-2004 Specification for Line Pipe[S].2004.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心