结构振动的直驱式AMD控制系统建模及数值分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对传统伺服阀控液压作动主动质量驱动控制系统(Active Mass Driver,AMD)存在的能源效率低等问题提出基于无阀作动器的直驱式DAMD(Direct driving Active Mass Driver)控制系统。首先分析了直驱式容积控制作动器的组成和控制原理及其用于AMD控制系统的策略;其次基于电机学、流体动力学原理推导建立了DAMD控制系统的转速-驱动力关系模型,给出了以泵的转速(伺服电机的驱动电压)为输入量、系统主动控制力为输出量的系统转速-力关系模型,建立了受控结构-DAMD控制系统的状态方程。最后以顶部设置DAMD控制系统的两层剪切型框架结构为例,进行地震荷载输入下DAMD主动控制的数值分析,计算结果表明直驱式容积控制作动器能够满足各种结构地震响应主动控制典型工况的出力需求,能够有效地减轻结构的反应,在一定范围内可以代替传统的AMD控制系统,实现结构振动的主动控制。
Owing to the limitations of low energy efficiencies in traditional servo-valve based hydraulic driving Active Mass Driver(AMD) control system,a non-valve based actuation control system,direct driving active mass driver(abbreviated as DAMD) control system has been put forward.The principles and control strategies of Direct Drive Volume Control based electro-hydraulic servo system has been analyzed and proposed for structural vibration control.Based on the theory of electro mechanics and fluid dynamics,theoretical models relating the rotational velocities with forces of the DAMD system are developed which utilize the values of rotational velocity(or the voltage command of the motor amplifier) to predict active control force by the DAMD system.The equations of state for DAMD control system embedded into the objective structure are established also.At last,a two-storey shearing type structural model with DAMD control system installed on the top floor is utilized to study the response of the model subject to seismic excitations.The numerical results indicate that the DAMD control system can be fully replaceable of traditional AMD system to satisfy the requirement of force actuation for active vibration control of structures,which can suppress the seismic response of the structure effectively and realize structural active control to a certain extent.
引文
[1]王正良.微机电液控制技术[M].大连:大连理工大学出版社,1993.
    [2]姜继海,苏文海,刘庆和.直驱式容积控制电液伺服系统.军民两用技术与产品.2003,(9):43—48.
    [3]ITO M,SATO H,Maeda Y.Direct drive volumecontrol of hydraulic system and its application to thesteering system of Ship[A].FLUCOME’97[C].Hayama,1997,445—450.
    [4]Masanori ITO,Noriki,HiROSE.Main engine revo-lution control for ship with direct drive volume controlsystem[A].ISME TOKYO[C].2000,2:26—31.
    [5]Richard T Schneider.F-35 fighter incorporates EHA[J].Hydraulics&Pneumatics,2002,55(12):45—51.
    [6]http:∥www.prime-tec.co.jp/[OL]
    [7]Housner G W,Bergman L A,Caughey T K,et al.Structural control:past,present and future[J].AS-CE Journal of Engineering Mechanics,1997,123(9):897—971.
    [8]欧进萍.结构振动控制:主动、半主动和智能控制[M].北京:科学出版社,2003.
    [9]Soong T T.Active Structural Control:Theory andPractice[M].New York:Longman Scientific&Tech-nical,1990.
    [10]Spencer B F,Nagarajaiah S.State-of-the-Art ofstructural control[J].ASCE Journal of Structural En-gineering,2003,129(7):845—856.
    [11]张春巍.结构振动的电磁驱动AMD控制系统机器相关理论与试验研究[D].哈尔滨:哈尔滨工业大学,2005.
    [12]彭天好,杨华勇,徐兵.VVVF技术在液压调速系统中的应用研究[J].机床与液压,2001(4):6—10.
    [13]黎勉,罗勇武.交流变频调速在液压系统中的应用[J].机床与液压,1997(6):16—18.
    [14]Tsai H C,Lin G C.Optimum tuned-mass dampers forminimizing steady-state response of support-excitedaan damped systems[J].Earthquake Engineering andStructural Dynamics,1993,12:957—973.
    [15]Soong T T,Dargush G F.Passive energy dissipationsystems in structural engineering[M].London:Wi-ley,1997.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心