TLD振动台子结构试验的数值仿真分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文采用振动台子结构试验数值仿真验证了圆柱形调谐液体阻尼器(CTLD)控制建筑结构地震响应的性能。振动台子结构试验将结构模型作为数值子结构在计算机中计算,将CTLD作为试验子结构进行物理试验。在CTLD和振动台之间安装剪切力检测装置,将测得的剪切力和地震波输入到数值子结构中,采用实时子结构中心差分法进行数值子结构运动方程的求解,计算得到了结构顶层的绝对加速度。再将加速度由振动台实时加载到试验子结构上,实现了结构和CTLD的相互作用。对一个单自由度结构有CTLD控制和无CTLD控制时的加速度响应进行了精确数值求解,结果验证了CTLD能够有效地控制结构在地震作用下的加速度响应。用振动台子结构试验对CTLD与结构耦合系统进行仿真,得到的加速度响应与精确数值求解的结果吻合较好,验证了这种方法能够准确地评估CTLD的减振性能。
Substructure shaking table method was applied for evaluating the seismic performance of a circle tuned liquid damper in a structure.The CTLD was chosen to be the experimental substructure tested physically,and the other structures were chosen to be the numerical substructures simulated in a computer.The seismic wave and the shear force measured by the sensor installed between the shaking table and the CTLD were input to the numerical substructure.With the central difference method for Real-time substructure testing considering specimen mass,the absolute acceleration at the top lay of the structure was calculated.This acceleration was enforced to the experimental substructure in real-time by shaking table in order to realize the interaction between the CTLD and structure.It is shown from pure numerical simulations for a SDOF system with and without CTLD control that the CTLD can effectively control the acceleration response of a structure.Then,Numerical simulations with the substructure shaking table method for a SDOF system with control were conducted and the results show that the acceleration response matches the pure numerical simulation result very well.This means that this method can effectively evaluate the seismic performance of the circle tuned liquid damper.
引文
黄浩华,徐文德,1981.位移控制电液伺服系统特性的改善方法.液压与气动,(1):5—8.
    李进,王焕定,张永山,赵桂峰,2005.高阶单步实时动力子结构试验技术研究.地震工程与工程振动,25(1):97—101.
    潘景龙,1990.单向模拟地震振动台设计中的若干问题讨论.哈尔滨建筑工程学院学报,23(2):90—99.
    邱法维,1989.电液伺服地震模拟振动台模拟控制系统理论分析.哈尔滨建筑工程学院学报,22(3):100—111.
    吴波,李惠,1997.建筑结构被动控制的理论与应用.哈尔滨:哈尔滨工业大学出版社,70—85.
    袁涌,熊世树,朱宏平,2008.加载速率对速度控制型实时子结构拟动力实验结果的影响.东南大学学报(自然科学版),5(38):784—787.
    杨现东,邓利霞,吴斌,2007.考虑试件质量的实时子结构试验中心差分法.见:第六届全国结构减震控制学术研讨会.昆明.
    Horiuchi T.,Inoue M.,Konno T.,2000.Development of real-time hybrid experimental system using a shaking table.See:Proc.12th Word Conference on Earthquake Engineering.paper No.0843.
    Igarashi A.,Iemura H.,Tanaka H.,2002.Development of substructure hybrid shake table test method and application to verification tests of vibration control devices.See:China-Japan workshop vibration control and health monitoring of substructures and third Chinese symposium on structural vibration control.Shanghai,China.
    Jung R.Y.,Shing P.B.,2006.Performance evaluation of a real-time pseudodynamic test system.Earthquake Engineering and Structural Dynamic,35:789—810.
    Lee S.K.,Park E.C.,Min K.W.,Lee S.H.,Chung L.,Park J.H.,2007.Real-time hybrid shaking table testing method for the performance evaluation of a tuned liquid damper controlling seismic response of building structures.Journal of Sound and Vibration,302:596—612.
    Nakashima M.,Kato H.,Takaoka E.,1992.Development of real-time Pseudo dynamic testing.Earthquake Engineering and Structural Dynamics,21(1):79—92.
    Reinhorn A.M.,Sivaselvan M.V.,Liang Z.,Shao X.Y.,2004.Real-time dynamic hybrid testing of structural systems.See:Proc13th Word Conference on Earthquake Engineering.paper No.1644.
    Soong T.T.,Dargush G.F.著,董平译,2005.Passive Energy Dissipation Systems in Structural Engineering(结构工程中的被动消能系统).北京:科学出版社,212—239.
    Tamura Y.,Fujii K.,Ohtsuki T.,Wakahara T.,Kohsaka R.,1995.Effectiveness of tuned liquid dampers under wind exicitation.Engineering Structures,17(9):609—621.
    Wu B.,Wang Q.,Sing P.B.,Ou J.,2007.Equivalent force control method for generalized real-time substructure testing with implicit integration.Earthquake Engineering and Structural Dynamics,36:1127—1149.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心