硬管母线连接的1000kV避雷器和电容电压式互感器抗震性能振动台试验
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为研究地震作用下硬管母线连接特高压电气设备之间的动力相互作用,进行了由硬管母线连接的1 000 k V避雷器和电容电压式互感器(CVT)组成的互连耦合结构体系的振动台试验。通过白噪声扫频和抗震试验,测定了设备频率以及关键部位的位移、应变和加速度响应。对比分析等效单体设备与互连耦合结构的地震响应,获得了硬管母线对电气设备地震响应的影响规律。结果表明:与等效单体设备相比,互连耦合结构的设备频率、位移和应变响应均有所降低,可采用在单体设备顶端施加配重的方式来等效简化互连耦合结构;由于硬管母线和滑动金具阻尼耗能的影响,高频互感器设备的地震响应降幅较大,其频率和应变响应的降幅均为21%。互连耦合结构在双向激励下的设备地震响应与单向激励时相比有所放大,放大倍数在1.19~1.22之间。
In order to investigate the dynamic interaction between UHV electrical equipment interconnected by tube bus under seismic effect, we carried out a shake table test on an interconnected coupling structure composed by a 1 000 k V arrester and a capacitor voltage transformer(CVT) interconnected by tube bus. The equipment frequency, and some key parts' displacement, strain and acceleration were measured through white noise frequency sweep and seismic test. Through comparing the seismic responses of equivalent single equipment with those of the interconnection coupling structure, we obtained the influencing mechanism of tube bus on the seismic response. The test results show that, compared with those of its equivalent single setup, the frequency, displacement, and strain of the interconnected coupling structure all decrease. Single setup added weight at its top can be adopted to equivalently simplify the interconnected coupling structure. Due to the energy damping dissipation caused by tube bus and sliding fittings, the seismic response of the high-frequency CVT decreases significantly: the frequency and strain of CVT both will be reduced by 21%. Moreover, the seismic response of the interconnected coupling structure under bidirectional excitation is 0.19~0.22 times larger than that under unidirectional excitation.
引文
[1]程永锋,朱全军,卢智成.变电站电力设施抗震措施研究现状与发展趋势[J].电网技术,2008,32(22):84-89.CHENG Yongfeng,ZHU Quanjun,LU Zhicheng.Progress and development trend on seismic measures of electric power equipments in transformer substation[J].Power System Technology,2008,32(22):84-89.
    [2]尤红兵,赵凤新.瓷柱式SF6高压断路器抗震性能分析[J].震灾防御技术,2010,5(4):418-427.YOU Hongbing,ZHAO Fengxin.The anti-seismic performance analysis of the porcelain knob type SF6 high-voltage circuit-breaker[J].Technology for Earthquake Disaster Prevention,2010,5(4):418-427.
    [3]张军,齐立忠,李科文,等.电瓷型高压电气设备的抗震试验及有限元分析[J].电力建设,2011,32(7):6-10.ZHANG Jun,QI Lizhong,LI Kewen,et al.Shock test and finite element analysis of porcelain high-voltage electrical equipment[J].Electric Power Construction,2011,32(7):6-10.
    [4]张文强,郝际平,解琦,等.国内外电瓷型高压电气设备瓷套管连接设计比较研究[J].电瓷避雷器,2010(2):15-20.ZHANG Wenqing,HAO Jiping,XIE Qi,et al.Comparative study on porcelain insulators design for high-voltage electric equipment at home and abroad[J].Insulators and Surge Arresters,2010(2):15-20.
    [5]刘振林,代泽兵,卢智成.基于Weibul分布的电瓷型电气设备地震易损性分析[J].电网技术,2014,38(4):1076-1081.LIU Zhenlin,DAI Zebing,LU Zhicheng.Weibull distribution based seismic vulnerability analysis of porcelain power equipment[J].Power System Technology,2014,38(4):1076-1081.
    [6]李亚琦,李小军,刘锡荟,等.电力系统抗震研究概况[J].世界地震工程,2002,18(4):79-84.LI Yaqi,LI Xiaojun,LIU Xihui,et al.A summary on the seismic analysis in the electrical system[J].World Earthquake Engineering,2002,18(4):79-84.
    [7]Filiatrault A,Kremmidas S.Seismic interaction of interconnected electrical substation equipment[J].Journal of structural engineering,2000,126(10):1140.
    [8]胡彧婧,谢强.管母线连接变电站电气设备的地震易损性分析[J].电力建设,2010,31(7):22-28.HU Yujing,XIE Qiang.Seismic vulnerability of substation equipment interconnected by rigid bus[J].Electric Power Construction,2010,31(7):22-28.
    [9]Dastous J B,Pierre J R.Experimental investigation on the dynamic behavior of flexible conductors between substation equipment during an earthquake[J].IEEE Transactions on Power Delivery,1996,11(2):801-806.
    [10]Richter H L.Post-quake lessons for power utilities[J].IEEE Spectrum,1988(25):46-48.
    [11]于永清,李光范,李鹏,等.四川电网汶川地震电力设施受灾调研分析[J].电网技术,2008,32(11):1-6.YU Yongqing,LI Guangfan,LI Peng,et al.Investigation and analysis of electric equipment damage in Sichuan power grid caused by Wenchuan earthquake[J].Power System Technology,2008,32(11):1-6.
    [12]孟宪政,代泽兵,卢智成,等.500 kV避雷器抗震性能振动台试验研究[J].电力建设,2014,35(1):35-39.MENG Xianzheng,DAI Zebing,LU Zhicheng,et al.Shaking table test for seismic performance of 500 k V arrester[J].Electric Power Construction,2014,35(1):35-39.
    [13]GB 50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010:19-21.GB 50011—2010 Code for seismic design of buildings[S].Beijing,China:China Architecture&Building Press,2010:19-21.
    [14]GB 50260—2013电力设施抗震设计规范[S].北京:中国计划出版社,2013:12-15.GB 50260—2013 Code for seismic design of electrical installations[S].Beijing,China:China Planning Press,2013:12-15.
    [15]谢强,白杰,薛松涛.特高压交流同塔双回输电塔地震模拟振动台试验[J].高电压技术,2012,38(6):1410-1419.XIE Qiang,BAI Jie,XUE Songtao.Shake table test on UHV AC double circuit transmission tower[J].High Voltage Engineering,2012,38(6):1410-1419.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心