不同类型场地对隔震储罐地震响应的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
利用精度高的四阶龙格库塔法求解橡胶基底隔震储罐的动力方程,探讨了场地因素对隔震储罐减震性能的影响,特别是对基底剪力、晃动波高、隔震支座位移3个重要响应参数的影响。研究表明:低隔震频率时储罐在4种场地上都取得良好隔震效果,场地越硬,减震效果越好,但有效隔震频率范围不一定越广。储罐减震效果提高需要付出隔震支座位移增大的代价。不同类型场地上储罐隔震后晃动波高都出现增大现象,Ⅰ类场地上波高变化剧烈但幅度很小,Ⅳ类场地上波高变化幅度最大。合理的支座阻尼比可以起到降低基底剪力、晃动波高和支座位移的作用。除了第Ⅱ类场地,2 000 m3罐减震效率高于50 000 m3罐。在设计储罐隔震系统时,建议根据罐体高径比综合考虑参数响应的影响,优化配置隔震频率和阻尼比等设计参数。
The lumped mass model of isolated tank was solved by the fourth-order Rungekutta method.The influences of four types of sites on the characteristics of dynamic response were studied,especially the important peak response pamameters including shear force,sloshing height and rubber bearing displacement.The results show that the harder the sites are,the better reduced effect of tank has,but the effective range of isolation frequency can t necessarily broaden as the sites get harder.The better isolation effects are attained at the expenses of the increase of the bearing displacement.The sloshing height increases at different sites compared with that of non-isolated tank.The change of vibration frequency of sloshing height on site I is more intense than any other site,but the corresponding amplitude is minimal.The amplitude of increasing sloshing height on site Ⅳ is remarkable.The appropriate damping ratio of isolation bearings can reduce shear force,sloshing height and rubber bearing displacement.The isolation effect of 2000 m3 tank on different sites is more effectively than that of 50000 m3 tank except for on the site Ⅱ.The design parameters of isolated tank system should be optimized according to the aspect ratios of tank.
引文
[1]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [2]TAJIRIAN F F.Seismic isolation of critical componentsand tanks:ATC-17-1 seminar on seismic isolation:Pas-sive Energy Dissipation,and Active Control,1993[C].San Francisco,Calif,c1993.
    [3]ZAYAS V A,LOW D S.Application of seismic isolationto industrial tanks:Pressure Vessels and Piping,Conf,Hawaii,1995[C].
    [4]MALHOTRA P K.Seismic strengthening of liquid-storagetanks with energy-dissipating anchors[J].Journal ofStructural Engineering,1998,124(4):405-414.
    [5]MALHOTRA P K.Method for seismic base isolation ofliquid-storage tank[J].Journal of Structural Engineer-ing,1997,123(1):113-116.
    [6]SHRIMALI MK,JANGID R S.Seismic analysis of base-isolated liquid storage tanks[J].Journal of Sound andVibration,2004,275(1-2):59-75.
    [7]孙建刚.弹性圆柱钢制储液容器橡胶基底隔震分析模型[J].大庆石油学院学报,1998,22(3):91-94.SUN Jian-gang.Analysis model of isolation control forelasto cylindrical steel storage fluid container[J].Journalof Daqing Petroleum Institute,1998,22(3):91-94.
    [8]王振,袁朝庆,孙建刚.立式钢制储罐隔震抗震设计的工程化方法[J].世界地震工程,2000,16(4):92-95.WANG Zhen,YUAN Zhao-qing,SUN Jian-gang.Engi-neering method of isolation design for stand steel storagetank[J].World Earthquake Engineering,2000,16(4):92-95.
    [9]孙建刚,郝进锋,王振.储罐基底隔震振型分解反应谱计算分析研究[J].哈尔滨工业大学学报,2005,37(5):649-651.SUN Jian-gang,HAO Jin-feng,WANG Zhen.Research onthe calculation of the mode analysis response spectrum ofthe seismic base isolation steel storage tank[J].Journal ofHarbin Institute of Technology,2005,37(5):649-651.
    [10]王锺琦.地震区工程选址手册[M].北京:中国建筑工业出版社,1994.
    [11]GB50011-2001建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心