海底缓坡场地地震侧移数值分析方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地震动使海底倾斜土层软化、液化并产生永久变形和位移。基于有限元理论,提出一种海底缓坡场地地震引起水平侧移的数值计算方法,将波浪荷载简化为恒定压力荷载和初始孔压,采用二维有效应力动力有限元分析方法进行液化分析,同时由模量软化理论得到土层在地震动各时段的模量,通过非线性静力方法计算软化、液化引起的水平侧移。由算例分析了土层坡度、液化层及上覆非液化层厚度、波浪荷载等因素对侧移的影响,通过对比分析表明了该方法的有效性,可为近海工程场地地震地质灾害评价提供参考数据。
Soil softening and liquefaction due to earthquake cause permanent deformations and displacements of submerged slope. Based on finile element theory, a numerical method for lateral displacement analysis of submerged gentle slope is presented. Wave loads are simplified as constant pressure and initial pore pressure. Liquefaction analysis is performed by 2-d dynamic effective stress finite element method. In each time segment, gradually softened modulus are calculated based on module soften theory; lateral displacements analysis are performed with the new modulus by nonlinear static method. By examples, the influences on lateral displacements are studied with different slope angles, wave loads, thicknesses of liquefied layers and surface non-liquefied layers. Compared with the results of other researches, the validity of the new method was confirmed and it is applicable to solutions of earthquake geological hazards evaluating in offshore engineering field.
引文
[1]Seed R B,Cetin K O,Moss R E S,et al.Recent advances in soil liquefaction engineering:A unified and consistent framework[R].White Paper for Keynote Presentation,26th Annual ASCE Los Angeles Geotechnical Spring Seminar[C].Long Beach,California:University of California,Berkeley,2003.
    [2]Piper D J W,Shor A N,Farre J A,et al.Sediment slidesand turbidity currents on the Laurentian Fan:Sidescan sonar observations near the epicenter of the1929Grand Banks earthquake[J].Geology,1985,13(5):538-541.
    [3]Greene H,Gardner-Taggart J,Ledbetter M,et al.Offshore and onshore liquefaction at Moss Landing spit,central California—Result of the October17,1989,Loma Prieta earthquake[J].Geology,1991,19(9):945-949.
    [4]Papatheodorou G,Ferentinos G.Submarine and coastal sediment failure triggered by the1995,Ms=6.1R Aegion earthquake,Gulf of Corinth,Greece[J].Marine Geology,1997,137(3-4):287-304.
    [5]顾晓芸.黏质海底稳定性实例分析[J].工程地质学报,1996,4(1):32-38.GU Xiao-yun.Case study of clayey seabottom stability[J].Journal of Engineering Geology,1996,4(1):32-38.
    [6]叶银灿,陈锡土,宋连清,等.浙江北部岛屿海域土体稳定性研究[J].东海海洋,1996,14(1):1-18.YE Yin-can,CHEN Xi-tu,SONG Lian-qing,et al.A study for the seafloor sediment stability around the island areas of northern Zhejiang Province[J].Donghai Marine Science,1996,14(1):1-18.
    [7]冯秀丽,庄振业,林霖,等.现代黄河水下三角洲软土稳定性定量分析[J].海岸工程,2000,19(1):50-53.FENG Xiu-li,ZHUANG Zhen-ye,LIN Lin,et al.Quantitative analysis of soft soil stability in the modern Huanghe subaqueous Delta[J].Coastal Engineering,2000,19(1):50-53.
    [8]Azizian A,Popescu R.Back analysis of the1929Grand Banks Submarine Slope Failure[A].Proceedings of54th Canadian Geotechnical Conference[C].Calgary:[s.n.],2001,808-815.
    [9]Pestana J M,Nadim F.Nonlinear site response analysis of submerged slopes[R].Geotechnical Engineering Report No.UCB/GT/2000-04,University of California,Berkeley.2000.
    [10]罗刚,张建民.邓肯-张模型和沈珠江双屈服面模型的改进[J].岩土力学,2004,25(6):887-890.LUO Gang,ZHANG Jian-min.Improvement of Duncan-Chang nonlinear model and Shen Zhujiang’s elastoplastic model for granular soils[J].Rock and Soil Mechanics,2004,25(6):887-890.
    [11]石兆吉,郁寿松,丰万玲.土壤液化势的剪切波速判别法[J].岩土工程学报,1993,15(1):74-80.SHI Zhao-ji,YU Shou-song,FENG Wan-ling.Soil liquefaction potential determination by shear wave velocity method[J].Chinese Journal of Geotechnical Engineering,1993,15(1):74-80.
    [12]朱镜清.结构抗震分析原理[M].北京:地震出版社,2002.106-112.
    [13]徐志英,沈珠江.地震液化的有效应力二维动力分析方法[J].华东水利学院学报,1981,9(3):1-14.XU Zhi-ying,SHEN Zhu-jiang.Effective stress2D dynamic analysis method for earthquake liquefaction[J].Journal of East China Institute of Water Conservancy,1981,9(3):1-14.
    [14]Seed H B,Martin P P,Lysmer J.The generation and dissipation of pore water pressures during soil liquefaction[R].Report No.EERC75-26,University of California,Berkeley,1975.
    [15]Lee K L,Albaisa.Earthquake induced settlement in saturated sands[J].Journal of the Geotechnical Engineering,American Society of Civil Engineering,1974,100(GT4):384-406.
    [16]谢君斐,石兆吉,郁寿松,等.液化危害性分析[J].地震工程与工程振动,1988,8(1):67-77.XIE Jun-fei,SHI Zhao-ji,YU Shou-song,et al.Hazard analysis of liquefaction[J].Earthquake Engineering and Engineering Vibration,1988,8(1):61-77.
    [17]孟上九,袁晓铭.建筑物不均匀震陷简化分析方法[J].地震工程与工程振动,2003,23(2):102-107.MENG Shang-jiu,YUAN Xiao-ming.Simplified analytical method for earthquake-induced differential settlement of buildings[J].Earthquake Engineering and Engineering Vibration,2003,23(2):102-107.
    [18]刘汉龙,费康,高玉峰.边坡地震稳定性时程分析方法[J].岩土力学,2003,24(4):553-557.LIU Han-long,FEI Kang,GAO Yu-feng.Time history analysis method of slope seismic stability[J].Rock and Soil Mechanics,24(4):553-557.
    [19]杨荣民,李安龙,曹立华,等.埕岛油田海底管道电缆路由勘察报告(CB20A-中心二号)[R],青岛:青岛海洋大学海洋地球科学学院,1997.
    [20]Tamate S,Towhata I.Numerical simulation of ground flow caused by seismic liquefaction[J].Soil Dynamics and Earthquake Engineering,1999,18(7):473-485.
    [21]Tokida K,Matsumoto H,Azuma T,et al.Simplified procedure to estimate lateral ground flow by soil liquefaction[A].Soil Dynamics and Earthquake Engineering,VI[C]:New York:Elsevier Applied Science,1993.381-396.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心