双向耦合地震作用下的混合控制结构研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
目的为了改善滑移隔震结构的减震效果和适用范围,研究双向耦合地震作用对控振结构的影响.方法提出3种磁流变阻尼器(MRD)与滑移隔震混合方案,建立了双向耦合地震作用下MRD与滑移隔震混合控制结构的动力分析模型,推导出其运动微分方程,采用瞬时最优控制算法对6层MRD与滑移隔震混合控制结构进行地震反应分析.结果MRD与滑移隔震混合结构的3种混合方案在3种工况荷载作用下的相对加速度峰值、相对速度峰值、相对位移峰值和层间剪力峰值分别比3种工况下的滑移隔震结构有不同程度的降低.结论当考虑竖向地震作用存在时,随着竖向地震作用的加大,结构的地震反应有小幅度地增加,但各种结构方案都具有良好地减振效果。各混合方案在各种工况下的各种地震反应均得到了更好地控制,而混合方案3的控制效果更加明显.
In order to improve the effect of shock absorption and applied scope of sliding base-isolated structure and study the influence of the action of coupling earthquake in both horizontal and vertical direction to vibration control structure,three kinds of hybrid projects with magnetorhrological damper(MRD) and sliding base-isolation were proposed in the paper.The theory of hybrid structure with MRD and sliding base-isolation under the action of coupling earthquake in both horizontal and vertical direction was researched.A kinematic differential equation was developed.Seismic response analysis of 6-story hybrid structure with MRD and sliding base-isolation was processed according to the theory of instantaneous optimal control(IOC) algorithm.Compared with sliding base-isolated structure,the peak value of various seismic responses of three hybrid projects with MRD and sliding base-isolation were reduced.Comparison of the results of dynamic analysis shows that various seismic responses of hybrid structure with MRD and sliding base-isolation under various loading conditions get better control than sliding isolated structure;the control effect of the third hybrid project is the best.
引文
[1]李宏男,李宏宇,董松员.基于模糊神经网络系统的结构主动控制[J].沈阳建筑大学学报:自然科学版,2005,21(2):99-102.
    [2]Masashi Iura,Kunihito Matsui.Analytical expressionsfor three different modes in harmonic motion of slid-ing structures[J].Earthquake Engineering&Struc-tural Dynamics,1992,21(9):757-769.
    [3]黄永林,孔建国,章熙海,等.基础隔震技术的发展及其对未来建筑设计思想的影响[J].工程抗震,2000,3(1):24-29.
    [4]付伟庆,王焕定,张永山.变刚度滞变耗能与隔震联合控制框架结构实验研究[J].世界地震工程,2002,18(4):73-78.
    [5]Ribakov Y,Gluck J.Active control of MDOF struc-tures with supplemental electrorheological fluiddampers[J].Earthquake Engineering and StructuralDynamics,1999,28(2):143-156.
    [6]张延年,刘剑平,刘斌.多向地震耦合作用下MR阻尼结构的地震反应分析[J].东北大学学报:自然科学版,2005,26(9):897-900.
    [7]Toshihiko S,Tomoya S,Shin M.Design and perfor-mance verification of variable damper using MR fluid[J].American Society of Mechanical Engineers,Dy-namic Systems and Control Division(Publication)DSC,2003,72(2):989-994.
    [8]Yang G Q,Spencer J B,Jung H J,et al.Dynamicmodeling of large-scale magnetorheological dampersystems for civil engineering applications[J].Journalof Engineering Mechanics,2004,130(9):1107-1114.
    [9]Xia P Q.An inverse model of MR damper using opti-mal neural network and system identification[J].Journal of Sound and Vibration,2003,266(5):1009-1023.
    [10]Atray V S,Roschke P N.Neuro-fuzzy control of rail-car vibrations using semiactive dampers[J].Comput-er-Aided Civil and Infrastructure Engineering,2004,19(2):81-92.
    [11]周云,徐龙河,李忠献.磁流体阻尼器半主动控制结构的地震反应分析[J].土木工程学报,2001,34(5):10-14.
    [12]李树信,姚谦峰.多层砖混结构基底隔震的应用研究[J].西安冶金建筑学院学报,1991,23(4):411-418.
    [13]Yang J N,Wu J C,Li Z.Control of seismic-excitedbuildings using active variable stiffness systems[J].Journal of Structure Engineering,1996,18(8):589-596.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心