多维地震作用下偏心结构楼板谱分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
利用SIMULINK仿真工具对水平双向地震输入下偏心结构的楼板谱进行了计算,研究了影响楼板谱变化的几个重要参数,最后对现行抗震设计规范中楼板谱计算的SRSS(Square Root of the Sumof Squares)方法进行了分析,并指出了它的不足。研究结果表明:改变附属结构质量楼板谱峰值区域会有显著的变化,调谐频率处楼板谱变化最明显,地震动卓越频率处楼板谱变化相对较小;改变偏心结构和附属结构阻尼比都会引起楼板谱的变化,但是二者影响的效果不同;附属结构所在楼层和层内位置的改变,使楼板谱发生变化;偏心结构偏心距对楼板谱有较复杂的影响;规范楼板谱在非峰值区域比较精确,在峰值区域存在较大误差,当偏心结构在地震作用下不同方向耦合效应明显时,规范楼板谱在非峰值区域也存在一定的误差。关键词:偏心结构;楼板谱;时程分析;多维地震;SIMULINK
The floor response spectrum of the eccentric structure subjected to two-dimensional horizontal earthquake input is computed on SIMULINK emulator,and a few influential key parameters are also discussed.In the end the shortcomings of the SRSS(Square Root of the Sum of Squares)method used in the current seismic design code are indicated.The results show that with the subsystem’s mass varying the floor response spectrum changes significantly at the tuned frequency,and less significatnly at the earthquake dominant frequency.The floor response spectrum is varied with different damping ratios of the eccentric structure and the subsystem. Furthermore,spatial locations of the subsystem influence the floor response spectrum,so does the eccentric distance of the eccentric structure.The latter is more complicated.The floor response spectrum obtained according to the design specifications is not proper in the peak-value region,and it is proper outside the peak-value region if the multi-directional coupling phenomenon is not significant.
引文
[1]中国国家地震局.GB50267-97核电厂抗震设计规范[S].北京:中国计划出版社,1997.China Earthquake Administration.GB50267-97Code for seismic design of nuclear power plants[S].Beijing:China Planning Press,1997.(in Chinese)
    [2]Warburton G B,Soni S R.Errors of torsional coupling on earthquake forces in buildings[J].Journal of Structural Division ASCE,1977,103(5):805―819.
    [3]Huang W H.Dynamic characteristic of equipment-structure systems with torsional effect[D].Department of Civil Engineering,National Taiwan University at Taipei,Taiwan,1991.
    [4]Yang Yeongbin,Huang Weihis.Seismic response of light equipment in torsional buildings[J].Earthquake Engineering and Structural Dynamics,1993,22(2):113―128.
    [5]Sackman J L,Kiureghian A D,Nour-Omid B.Dynamic analysis of light equipment in structures:modal properties of the combined system[J].Journal of Engineering Mechanics ASCE,1983,109(1):73―89.
    [6]李宏男.结构多维抗震理论与设计方法[M].北京:科学出版社,1998.Li Hongnan.Theoretical analysis and design of structures to multiple earthquake excitations[M].Beijing:Science Press,1998.(in Chinese)
    [7]李颖,朱伯立,张威.Simulink动态系统建模与仿真基础[M].西安:西安电子科技大学出版社,2004.Li Ying,Zhu Boli,Zhang Wei.Modeling and simulation foundation of dynamic system based on Simulink[M].Xi’an:Xidian University Press,2004.(in Chinese)
    [8]秦权,李瑛.非结构构件和设备的抗震设计楼板谱[J].清华大学学报,1997,37(6):82―86.Qin Quan,Li Ying.Design floor spectra for nonstructural components and equipment in buildings[J].Journal of Tsinghua University,1997,37(6):82―86.(in Chinese)
    [9]Igusa T,Kiureghian A D.Generation of floor response spectra including oscillator-structure interaction[J].Earthquake Engineering and Structural Dynamics,1985,13(5):661―676.
    [10]李宏男,杨浩.多维地震作用下偏心结构动力反应的Simulink仿真分析[J].防灾减灾工程学报,2004,24(4):355―362.Li Hongnan,Yang Hao.Dynamic response analysis of eccentric structure to multi-dimensional earthquake motions using Simulink[J].Journal of Disaster Pnevention and Mitigation Engineering,2004,24(4):355―362.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心