近场地震作用下单自由度结构强度折减系数谱
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
在考虑位移延性和屈服强度比对单自由度结构强度折减系数影响的基础上,针对近场地震记录提出一个完备的强度折减系数模型。收集了近年来几次较大的近场地震动(震中距:0~30km)中的记录共计212条,并且依据场地土类别对所选记录进行分类。脉冲信号广泛存在于近场记录中,并由此产生前倾性、急冲等效应,使得近场记录具有不一样的频谱特性。已有的模型虽然也涉及到近场记录,但并没有明显突出这些特点,因而,采用已有的模型来计算结构在遭受近场记录时的强度需求,可能会导致不安全的结果。通过计算单自由度系统的强度需求和对结果进行回归分析,在满足一定位移延性以及屈服强度比下,建立适用于近场地震动记录的强度折减系数谱;并提出满足一定超越概率的模型来考虑结果的离散性。
Considering the effect of displacement ductility and over-strength ratio,the spectrums of strength reduction factor for a single degree of freedom system(SDOF) under near-field ground motions are comprehensively studied.The 212 records derived from several recent near-field ground motions are categorized with respect to three types of soils.As the near-field records(NFR) contain pulse signals and inherent forward effects,so the spectrum is different from the normal records.Although,several current models also take the near-field effect into consideration,but none of them can clearly reflect these characteristics,thus when used to estimate the strength demand of the NFR,it may lead to unsafe results.Analysis of the dispersion of error is also carried out,and the probability spectrum function is also presented.
引文
[1]Manfredi G.Evaluation of seismic energy demand[J].Earthquake Engineering and Structural Dynamics,2001,30(4):485-499
    [2]Tomohiro H.The building standard law of Japan[M].Japan:The Building Center of Japan,2010
    [3]Uniform building code[S].California:International Conferenceof Building Officials,1997
    [4]GB 50011—2001建筑抗震设计规范[S].北京:中国建筑工业出版社,2001(GB 50011—2001 Code for seismicdesign of buildings[S].Beijing:China Architecture&Building Press,2001(in Chinese))
    [5]CECS 160—2004建设工程抗震性态设计通则[S].北京:中国计划出版社,2004(CECS 160—2004 Generalrule for performance-based seismic design of buildings[S].Beijing:China Planning Press,2004(in Chinese))
    [6]Eurocode 8:Design of structures for earthquake resistance[S].Brussels:European Committee for Standardization,2003
    [7]Akiyama H.Earthquake resistant limit-state design for buildings[M].Tokyo:University of Tokyo Press,1985
    [8]Miranda E,Bertero V V.Evaluation of strength reductionfactors for earthquake-resistant design[J].EarthquakeSpectra,1994,10(2):357-379
    [9]Nassar A A,Osteraas J D,Krawinkler H.Seismic designbased on strength and ductility demands[C]//Proceedingsof 10th World Conference on Earthquake Engineering.Madrid,Spain,1992
    [10]Miranda E,Ruiz-Gracia J.Influence of stiffness degradationon strength demands of structures built on soft soil sites[J].Engineering Structures,2002,24(10):1271-1281
    [11]Miranda E.Site-dependent strength reduction factors[J].Journal of Structural Engineering,1993,119(12):3503-3519
    [12]Lee L H,Han S W,Oh Y H.Determination of ductilityfactors considering different hysteretic models[J].Earthquake Engineering and Structural Dynamics,1999,28(9):957-977
    [13]Somerville P G.Magnitude scaling of the near fault rupturedirectivity pulse[J].Physics of the Earth and PlanetaryInteriors,2003,137(1/2/3/4):201-212
    [14]Kalkan E,Kunnath S K.Effects of fling-step and forwarddirectivity on the seismic response of buildings[J].Earthquake Spectra,2006,22(2):367-390
    [15]Malhotra P K.Response of building to near-field pulse-likeground motions[J].Earthquake Engineering and StructuralDynamics,1999,28(11):1309-1326
    [16]Chopra A K,Chintanapakdee C.Comparing response ofSDF systems to near-fault and far-fault earthquake motionsin the context of spectral regions[J].EarthquakeEngineering and Structural Dynamics,2001,30(12):1769-1789
    [17]Veletsos A S,Newmark N M.Effect of inelastic behavioron the response of simple systems to earthquake motions[C]//Proceedings of the 2nd World Conference onEarthquake Engineering.Japan,1960
    [18]Tong Genshu,Zhao Yongfeng.Seismic force modificationfactors for modified-clough hysteretic model[J].Engineering Structures,2007,29(11):3053-3070

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心