城市给水系统灾害恢复力的地震鲁棒性分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于灾害恢复力的概念和评价属性,以城市给水系统地震损失模型为研究路径,运用基于蒙特卡洛仿真的GIRAFFE模型,通过升级输水干道评价了城市给水系统在M6.5和M7.0两个震级下的技术鲁棒性和组织鲁棒性。结果表明,升级输水干道对系统的技术鲁棒性和组织鲁棒性效果明显,且随着震级的提高而越发显著。此外,输水干道的重要程度与震级强度无关,但随着震后时间的推移,其重要性取决于输水管道所处的系统位置,即在震后0时,处于系统枢纽位置的管道相对重要;在震后24h,靠近供水源的管道则相对重要。
Based on the concept and characteristics of disaster resilience,technical robustness and organizational robustness were discussed by updating trunk lines of urban water supply system for two different earthquake magnitudes,M 6.5 and M 7.0 respectively,where lifeline earthquake loss model was taken as a starting point.Monte Carlo based GIRAFFE model was adopted in this research.Result shows that retrofit of trunk lines is helpful for both technical robustness and organizational robustness,and the updating effect would become more significant as the earthquake magnitude increases.Furthermore,criticalness of pipelines is not determined by the earthquake magnitude,but as time goes it depends on their respective locations in the system and system configuration.At the moment instantly after earthquake,the pipelines which are located at the center of system would be more critical;while 24 hours later,the pipelines which are closer to the reservoir will become more critical.
引文
[1]Clinton W J.Executive Order 13010on critical infrastructureprotection[R].Washington,DC:Government PrintingOffice;1996.
    [2]张灵,陈晓宏,千怀遂.北江下游防洪保护区恢复力诊断[J].水利学报,2011(9):1129-1134.
    [3]Unisdr.Living with risk:A global review of disaster deductioninitiatives[R].ISDR Secretariat,Geneva,Switzerland,2002.
    [4]Bruneau M,Chang S E,Eguchi R,et al.A framework to quan-titatively assess and enhance the seismic resilience of communi-ties[J].Earthquake Spectra,2003,19(4):733-752.
    [5]Bruneau M,Reinhorn A M.Exploring the concept of seismicresilience for acute care facilities[J].Earthquake Spectra 2007,23(1):41-62.
    [6]Chang S E,Shinozuka M.Measuring improvements in the dis-aster resilience of communities[J].Earthquake Spectra 2004,20(3):739-755.
    [7]MilesS B,CHANG S E.Modeling community recovery fromearthquakes[J].Earthquake Spectra,2006,22(2):439-458.
    [8]Davidson R,Cagnan Z.Restoration modeling of lifeline systems[R].MCEER Research Progress and Accomplishments:2003-2004,MCEER-04-SP01,May 2004.
    [9]Cimellaro G P,Reinhorn A M,Bruneau M.Framework for an-alytical quantification of disaster resilience[J].EngineeringStructures,32(2010):3639-3649.
    [10]Klein R J T,Nicholls R J,Thomalla F.Resilience to naturalhazards:how useful is this concept?[J].Environmental Haz-ards,2003,5(1-2):35-45.
    [11]Manyena S B.The concept of resilience revisited[J].Disasters,2006,30(4):433-450.
    [12]Shi P X.Seismic response modeling of water supply system[D].Cornell University,Ithaca,NY,2006.
    [13]Bruneau M,Reinhorn A.Overview of the resilience concept[C].Proceedings of the 8th U.S.National Conf.on EarthquakeEngineering,Earthquake Engineering Research Institute,April18-22,2006,San Francisco,California,USA,PaperNo.2040.
    [14]Wang C H,BlackmoreJ M.Resilience concepts for water re-source systems[J].Journal of Water Resources Planning andManagement,2009,35(6):528-536.
    [15]Rossman L A.EPANET 2 Users Manual.National manage-ment research laboratory,office of research anddevelopment[M].U.S:Environmental Protection Agency,Cincinnati,2000.
    [16]Chang S E,Svekla W D,Shinozuka M.Linking infrastructureand urban economy:Simulation of water disruption impacts inearthquake[J].Environment and Planning B:Planning and De-sign,2002,29(2):281-301.
    [17]Giraffe U M.Cornell University,School of Civil&Environ-mental Engineering,Ithaca,NY,USA,2008.
    [18]Chang S E.Infrastructure resilience to disasters[J].Winter Is-sue of The Bridge on Frontiers of Engineering,2009,39(4):36-42.
    [19]Toppak S,Taskin F,Kon A C.Prediction of earthquake dam-age to urban water distribution systems:a case study for Deniz-li,Turkey[J].Bull Eng Geol Environ,2009,68(4):499-510.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心