近断层地震作用下钢板剪力墙结构基于MECE谱的性态设计方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
结构在近断层地震作用下的损伤通常与强速度脉冲所携带的瞬时输入能量相关,为反映这种近场地面运动特征,以10条坚硬场地的近场地震记录为输入,建立了适用于设计的最大有效滞回耗能(MECE)谱,提出了基于MECE谱确定钢板剪力墙结构屈服基底剪力的性态设计方法。该方法不仅反映近场地震速度脉冲的影响,而且还可区别不同结构体系滞回特性的影响。同时,结合已有研究成果完善了钢板剪力墙结构周边构件能力设计的简化公式。通过对1榀10层3跨钢板剪力墙结构的弹塑性时程分析,对建议方法进行了验证。结果表明:在多遇及罕遇地震作用下结构层间位移角满足我国现行建筑抗震设计规范的要求,结构出现理想的渐进式梁铰屈服机构,证明了基于MECE谱钢板剪力墙结构性态设计方法的合理性和可靠性。
The damage of buildings under near-fault earthquakes was related to the instantaneous input energy.In order to reflect near-fault pulse effect,a total of 10 near-fault ground motion records of stiff soil site condition were selected to construct the maximum effect cyclic energy(MECE) spectrum appropriate for seismic design.The base shear of steel plate shear wall(SPSW) was determined based on the MECE spectrum.Velocity pulse effect and hysteretic behavior of different structural system were taken into account in this energy-based seismic design method of SPSW.The design formula of steel beam and column surrounding of SPSW were proposed based on previous research results.A ten-story,three-span SPSW was designed based on this new design method,and seismic behavior was evaluated by nonlinear time history method.The analytical results show that the maximum average drift of SPSW can satisfy the deformation requirement of Chinese seismic code under frequent and rare earthquake levels,and the SPSW structure exhibits the ideal progressively developed plastic mechanism.The reliability and accuracy of this new design method are verified.
引文
[1]Housner G W.Limit design of structures to resistearthquakes[C]//Proceedings of the 1st WorldConference Earthquake Engineering.California:EERI,1956:5.1-5.13.
    [2]Kalkan E.Prediction of seismic demand in buildingstructures[D].Davis:University of California,Davis,2006:83-101.
    [3]Hall J F,Heaton T H,Halling M W,et al.Nearsource ground motion and its effects on flexible buldings[J].Earthquake Spectra,1995,11(4):1257-1280.
    [4]Makris N,Chang S P.Effects of viscous,viscoplasticand friction damping on the response of seismic isolatedstructures[J].Earthquake Engineering and StructuralDynamics,2000,29(1):85-107.
    [5]Alavi B,Krawinkler H.Behavior of moment-resistingframe structures subjected to near-fault ground motions[J].Earthquake Engineering and Structural Dynamics,2004,33(6):687-706.
    [6]Mavroeidis G P,Dong G,Papageorgiou A S.Near-faultground motions,and the response of elastic andinelastic single-degree-of-freedom system[J].Earthquake Engineering and Structural Dynamics,2004,33(9):1023-1049.
    [7]Akkar S,Yazgan U,Gulkan P.Drift estimates in framebuilding subjected to near-fault motions[J].Journal ofStructural Engineering,2005,131(7):1014-1024.
    [8]Spyrakos C C,Maniatakis C A,Taflambas J.Evaluation of near-source seismic records based ondamage potential parameters case-study:Greece[J].Soil Dynamics and Earthquake Engineering,2008,28(7):738-753.
    [9]江义,杨迪雄,李刚.近断层地震动向前方向性效应和滑冲效应对高层钢结构地震反应的影响[J].建筑结构学报,2010,31(9):103-110.(JIANG Yi,YANG Dixiong,LI Gang.Effects of forward directivityand fling step of near-fault ground motions on seismicresponses of high-rise steel structure[J].Journal ofBuilding Sturctures,2010,31(9):103-110.(inChinese))
    [10]Kalkan E,Kunnath S K.Effects of fling step andforward directivity on seismic response of buildings[J].Earthquake Spectra,2006,22(2):367-390.
    [11]Bruneau M,Wang N.Some aspects of energy methodsfor the inelastic seismic response of ductile SDOFstructures[J].Engineering Structures,1996,18(1):1-12.
    [12]ASCE/SEI 7-10 Minimum design loads for buildingsand other structures[S].Reston US:American Societyof Civil Engineers,2010.
    [13]孙国华,顾强,何若全,等.基于滞回耗能谱的钢板剪力墙结构性态设计方法[J].建筑结构学报,2011,32(11):126-133.(SUN Guohua,GU Qiang,HE Ruoquan,et al.Performance based seismic designof steel plate shear walls using hysteretic energyspectrum[J].Journal of Building Structures,2011,32(11):126-133.(in Chinese))
    [14]Chao Shih-Ho.Performance-based seismic design ofEBF using target drift and yield mechanism asperformance criteria[R].UMCEE 05-05.Ann Arbor:University of Michigan College of Engineering.Department of Civil and Environmental Engineering,2005:25-26.
    [15]邵建华.抗弯钢框架-钢板剪力墙的结构影响系数与位移放大系数研究[D].南京:河海大学,2008:78-81.(SHAO Jianhua.Research on structuralinfluencing coefficient and deflection amplification factorof moment-resisting steel frame-steel plate shearwall[D].Nanjing:Hohai University,2008:78-81.(in Chinese))
    [16]GB50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.(GB50011—2010Codefor seismic design of buildings[S].Beijing:ChinaArchitecture&Building Press,2010.(in Chinese))
    [17]于安林,赵宝成,李仁达,等.耗能段腹板高厚比对Y型偏心支撑钢框架滞回性能影响的试验研究[J].地震工程与工程振动,2009,29(6):143-148.(YUAnlin,ZHAO Baocheng,LI Renda,et al.Experimental study on effect of link beam web depth-thickness ratio on energy-dissiation of Y-shapedeccentrically braced steel frames[J].Journal ofEarthquake Engineering and Engineering Vibration,2009,29(6):143-148.(in Chinese))
    [18]AISC.Design guide 20:steel plate shear walls[R].San Francisco:American Institute of SteelConstruction,2007:49-76.
    [19]Qu Bing.Seismic behavior and design of boundaryframe members in steel plate shear walls[D].NewYork:State University of New York at Buffalo,2008:185-233.
    [20]Park H G,Kwack J H,Jeon S W,et al.Frame steelplate shear wall behavior under cyclic lateral loading[J].Journal of Structural Engineering,2007,133(3):378-388.
    [21]Thorburn L J,Kulak G L,Montgomery C J.Analysis ofsteel plate shear walls[R].No.107.Edmonton:University of Alberta,1983.
    [22]Timler P A,Kulak G L.Experimental study of steelplate shear walls[R].No.114.Edmonton:Universityof Alberta,1983.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心