饱和砂土地震液化后地面大位移特性研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地震引起的地基液化常会造成地基大的侧向变形而导致灾难性的破坏,饱水砂土液化后的变形特性是地震液化大位移研究的基础。通过全自动多功能三轴仪的空心样动加载液化后的静扭剪试验,对饱水砂土液化后大变形特性进行了试验研究。结果表明,与常规静加载特性不同,饱水砂土液化后静加载时表现出单调剪胀的特性,加载初始阶段孔压基本不变,应变达到一定幅度后孔压一直减小,液化后变形曲线可分为低强度段和强度恢复段。低强度段模量近乎为零,强度恢复段试样强度不断增长。低强度段是液化后大变形发生的主要阶段。
Great disasters will be caused by large lateral deformation induced by earthquake liquefaction.The behavior of saturated sand after liquefaction is the basis of the research on earthquake-induced large deformation.Static torsion shear tests of hollow sample on post liquefaction of sand are performed.Test results show that the EPP always falls during static loading and the sand has the property of dilatation after liquefaction.The deformation curves can be divided into two sections,low strength segment and strength recovery segment.The modulus of low strength segment is approximate zero and it increases in the strength recovery segment.Large lateral deformation after liquefaction mainly occurred in the low strength segment.
引文
[1]Yamamuro J A,Lade P V.Steady-state concepts andstatic liquefaction of silty sands[J].Journal ofGeotechnical and Geoenvironment Engineering,1998,124(9):868-877.
    [2]Ishihara K,Sodekawa M,Tanaka Y.Effects ofoverconsolidation on liquefaction characteristics ofsands containing fines[J].Dynamic GeotechnicalTesting,ASTM,1977,(654):246-264.
    [3]Tokimatsu K,Asaka Y.Effects of liquefaction-induced ground displacements on pile performance inthe 1995 Hyogeken-Nambu earthquake[J].Soils andFoundations,1998,(S):163-177.
    [4]陈国兴,左熹,王志华,等.近远场地震作用下液化地基上地铁车站结构动力损伤特性的振动台试验[J].土木工程学报,2010,43(12):120-126.Chen G X,Zuo X,Wang Zh H,et al.Large scaleshaking table test study of the dynamic damagebehavior of subway station structure in liquefiablefoundation under near-fault and far-field groundmotions[J].China Civil Engineering Journal,2010,43(12):120-126.
    [5]Miwa S,Ikeda T,Sato T.Damage process of pilefoundation in liquefied ground during strong motion[J].Soil Dynamic and Earthquake Engineering,2006,26(2/4):325-336.
    [6]Gonzalez L,Abdoun T,Dobry R D.Effect of soilpermeability on centrifuge modeling of pile response tolateral spreading[J].Journal of Geotechnical andGeoenvironmental Engineering,2009,135(1):62-73.
    [7]张建民,王刚.砂土液化后的大变形机理[J].岩土工程学报,2006,28(7):835-840.Zhang J M,Wang G.Mechanism of large post-liquefaction deformation in saturated sand[J].ChineseJournal of Geotechnical Engineering,2006,28(7):835-840.
    [8]Bartlett S F,Youd T L.Empirical prediction ofliquefaction-induced lateral spread[J].Journal ofGeotechnical Engineering,ASCE,1995,121(4):316-329.
    [9]Uzuoka R,Yashima A,Kawakami T,et al.Fluiddynamics based prediction of liquefaction-inducedlateral spreading[J].Computers and Geotechnics,1998,22(3):243-282.
    [10]Hadush S,Yashima A,Uzuoka R.Importance ofviscous fluid characteristics in liquefaction-inducedlateral spreading analysis[J].Computers andGeotechnics,2000,27(3):199-224.
    [11]Towhata I,Sasaki Y,Tokida K I,et al.Prediction ofpermanent displacement of liquefied ground by meansof minimum energy principle[J].Soils andFoundations,1992,32(3):97-116.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心