基于高精度地层倾角线性反演的地震全体积拉平方法
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地震数据的拉平分析是三维地震资料解释中的常见方法,一般通过拾取某一标准层位并将其校正到一个基准面的方式拉平地震数据,这样会导致距离标准层越远的层位拉平效果越差.近几年发展起来的三维地震数据全体积拉平方法是避免这种拉平缺陷的有效途径.本文提出一种基于高精度地层倾角的全体积自动拉平方法,该方法将一种自适应加权的向量滤波法获得高精度的局部地层倾角作为观测数据,根据拉平变换对每个数据样点产生的垂向偏移量与地层倾角之间的近似线性关系,建立最小二乘反演机制.在优化反演模型时,引入由梯度结构张量法得到的误差控制模板,抑制断层等复杂地质构造对拉平效果的影响;此外,增加模型参数的平滑度量项,避免拉平后的数据出现较大的畸变,并采用模型重新参数化方法,加快反演算法的收敛速度.三维合成数据和实际地震资料的试算结果表明这种三维全体积拉平方法是有效和可行的.
Flattening seismic data is one commonly used interpretation technique that helps extracting geologic and reservoir features.Traditional approaches need to track a horizon throughout the data volume and then flatten data on the picked horizon.These approaches may produce unsatisfactory results for layers far from the referred horizon which can be avoided by volumetric flattening approaches.This paper proposes a volumetric flattening approach to automatically flatten seismic data with local seismic dips.The approach utilizes the accurate seismic dips as observation data for the flattening algorithm which are calculated by a weighted vector directional filter scheme.By considering the approximate linearity relationship between vertical flattening shifts and local dips,a least-squares inversion model is established.Several optimization strategies are taken into account for this inversion problem.An error mask calculated by gradient structure tensor is included to reduce influences of structural complexities such as faults.And a regularization term measuring vertical smoothness of the model is added to diminish waveform distortion of flattened data.Besides,model reparameterization is also adopted to accelerate the convergence of the conjugate-gradient algorithm.Both the synthetic and real data examples illustrate that the proposed approach is feasible and effective.
引文
[1]van Hoek T,Gesbert S,Pickens J.Geometric attributes forseismic stratigraphic interpretation.The Leading Edge,2010,29(9):1056-1065.
    [2]Hoyes J,Cheret T.A review of“global”interpretationmethods for automated 3D horizon picking.The LeadingEdge,2011,30(1):38-47.
    [3]Brouwer F,de Groot P,Kumpus M.Maximizing the value ofseismic data through increased horizon mapping:applicationsin the Middle East and Canada.First Break,2011,29(3):87-92.
    [4]Zeng H L,Backus M M,Barrow K T,et al.Stratal slicing,part I:realistic 3-D seismic model.Geophysics,1998,63(2):502-513.
    [5]Zeng H,Henry S C,Riola J P.Stratal slicing,Part II:Real3-D seismic data.Geophysics,1998,63(2):514-522.
    [6]Lee R F.Pitfalls in seismic data flattening.The LeadingEdge,2001,20(2):160-164.
    [7]Stark T J.Unwrapping instantaneous phase to generate aRelative Geologic Time Volume.∥73th Annual InternationalMeeting,SEG.Expanded Abstracts,2003.1707-1710.
    [8]Stark T J.Relative geologic time(age)volumes-Relatingevery seismic sample to a geologically reasonable horizon.The Leading Edge,2004,23(9):928-932.
    [9]Pauget F,Lacaze S,Valding T.A global approach in seismicinterpretation based on cost function minimization.∥79thAnnual International Meeting,SEG.Expanded Abstracts,2009.2592-2596.
    [10]de Groot P,de Bruin G,Hemstra N.How to create and use3D wheeler transformed seismic volumes.∥76th AnnualInternational Meeting,SEG.Expanded Abstracts,2006.1038-1042.
    [11]de Groot P,Huck A,de Bruin G,et al.The horizon cube:Astep change in seismic interpretation!The Leading Edge,2010,29(9):1048-1055.
    [12]de Bruin G,Hemstra N,Pouwel A.Stratigraphic surfaces inthe depositional and chronostratigraphic(Wheeler-transformed)domain.The Leading Edge,2007,26(7):883-886.
    [13]Wheeler H E.Time-stratigraphy.AAPG Bulletin,1958,42(5):1047-1063.
    [14]Lomask J,Guitton A,Fomel S,et al.Flattening withoutpicking.Geophysics,2006,71(4):13-20.
    [15]Lomask J,Guitton A.Volumetric flattening:an interpretationtool.The Leading Edge,2007,26(7):888-897.
    [16]Fomel S.Predictive painting of 3Dseismic volumes.Geophysics,2010,75(4):A25-A30.
    [17]Parks D,Hale D.Seismic image flattening as a linear inverseproblem[Master thesis].Colorado School of Mines,2010.
    [18]Ottolini R.Signal/noise separation in dip space.SEP report37,1983:143-149.
    [19]Fomel S.Applications of plane-wave destruction filters.Geophysics,2002,67(6):1946-1960.
    [20]刘洋,王典,刘财等.局部相关加权中值滤波技术及其在叠后随机噪声衰减中的应用.地球物理学报,2011,54(2):358-367.Liu Y,Wang D,Liu C,et al.Weighted median filter basedon local correlation and its application to poststack randomnoise attenuation.Chinese J.Geophys.(in Chinese),2011,54(2):358-367.
    [21]Marfurt K J,Kirlin R L,Farmer S L,et al.3-D seismicattributes using a semblance-base coherency algorithm.Geophysics,1998,63(4):1150-1165.
    [22]Marfurt K J,Sudhaker V,Gersztenkorn A,et al.Coherencycalculations in the presence of structural dip.Geophysics,1999,64(1):104-111.
    [23]Fehmers G C,Hocker C F W.Fast structural interpretationwith structure-oriented filtering.Geophysics,2003,68(4):1286-1293.
    [24]杨培杰,穆星,张景涛.方向性边界保持断层增强技术.地球物理学报,2010,53(12):2992-2997.Yang P J,Mu X,Zhang J T.Orientational edge preservingfault enhance.Chinese J.Geophys.(in Chinese),2010,53(12):2992-2997.
    [25]Wang W,Gao J,Chen W.Robust estimates of seismicreflector orientations with weighted vector directional filter.Journal of Seismic Exploration,2011,20(2):119-134.
    [26]Parks D,Harlan W,Hale D.Defining regions in seismicimages by flattening.CWP-592,2008:67-74.
    [27]Bakker P.Image structure analysis for seismic interpretation[Ph.D.thesis].The Netherlands:Technische UniversiteitDelft,2002.
    [28]Golub G H,Van Loan C F.Matrix Computations.Baltimore&London:The Johns Hopkins University Press,1996.
    [29]Fomel S.Shaping regularization in geophysical-estimationproblems.Geophysics,2007,72(2):R29-R36.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心