基于多功能地震波孔压静力触探的唐山地区砂土液化特性再调查试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
鉴于1976年唐山大地震后液化调查手段及液化评价方法研究的局限性,开展液化和非液化区的现场再调查是非常有用的。采用符合国际标准的多功能地震波孔压静力触探(SCPTu)在唐山及其邻近地区进行调查试验,为场地液化再调查提供近似连续的锥尖阻力、侧壁摩阻力、孔压及剪切波速数据。通过18个试验点的SCPTu、室内试验及历史震害调查资料的综合比较,对各场地现今的液化可能性进行分析,并对国内外常用的几种液化判别方法进行分析研究。国内规范法、国际常用的Robertson确定性方法及Moss概率方法的分析结果均表明,曾经发生过液化的场地现今仍然容易发生液化;基于CPTu的Robertson确定性方法及基于贝叶斯理论的Moss概率方法各有优缺点,均有完善的计算流程,前者在液化后场地沉陷及侧向大变形预测方面具有优势,后者可以给出各试验点的液化概率,进而服务于基于概率的工程抗震评估与设计;由于SCPTu试验技术在国内发展缓慢,现今基于SCPTu的几种国际常用液化评价方法在国内应用较少,也是今后在技术手段突破后急需加深研究的方向。
Due to the limitations of investigating instruments and liquefaction evaluation methods after the 1976 Tangshan earthquake,it is very useful to perform the re-investigations at liquefaction and non-liquefaction sites nowadays.The multifunctional seismic piezocone penetration test(SCPTu) method was used for this work.The nearly continuous profiles of tip resistance,sleeve friction,pore water pressure,and shear wave velocity were obtained.The liquefaction potential of testing sites was evaluated by comparing the SCPTu measurements,the indoor experiments and historical investigation data.Several popular CPTu-based liquefaction evaluation methods at home and abroad were analyzed particularly.Results from Chinese Standard method,Robertson deterministic method and Moss probabilistic method indicate that most of the testing sites that liquefied during the 1976 Tangshan earthquake will liquefy again.The CPTu-based Robertson deterministic method and the Moss probabilistic method based on Bayesian theory show respective advantages and disadvantages.Both of them have reasonably comprehensive calculation procedures.The Robertson deterministic method has special advantage in predicting vertical settlement and lateral large deformation,while the Moss probabilistic method can present the liquefaction probability for every site and serve for the seismic evaluation and engineering design.However,due to the slow development of SCPTu technique in China,kinds of current international CPTu-based liquefaction evaluation methods are seldom used,which require further study after technology have been breakthrough in future.
引文
[1]刘恢先.唐山大地震震害(第一册)[S].北京:地震出版社,1985:301–429.(LIU Huixian.Tangshan earthquake damage(1st volume)[M].Beijing:Earthquake Press,1985:301–429.(in Chinese))
    [2]邱毅,曹振中,袁晓铭,等.唐山地区可液化场地标准CPT指标及其与剪切波速的关系[J].地震工程与工程振动,2010,30(2):150–158.(QIU Yi,CAO Zhenzhong,YUAN Xiaoming,et al.Standard CPT values on liquefiable sites in Tangshan region and itsrelationship with shear wave velocity[J].Earthquake Engineering andEngineering Vibration,2010,30(2):150–158.(in Chinese))
    [3]董津城.唐山地震砂土液化的研究[J].工程勘察,1984,(5):7–14.(DONG Jincheng.Study of sand liquefaction during Tangshanearthquake[J].Geotechnical Investigation and Surveying,1984,(5):7–14.(in Chinese))
    [4]王克鲁,盛学斌,蔡灵铎,等.唐山地震时不同烈度区液化砂土的特征及其液化判别[J].地震地质,1982,4(2):59–70.(WANG Kelu,SHENG Xuebin,CAI Lingduo,et al.Characteristics of liquation ofsoil in the areas with various intensities during Tangshan earthquakeand criteria for recognition of liquation[J].Seismology and Geology,1982,4(2):59–70.(in Chinese))
    [5]刘松玉,吴燕开.论我国静力触探技术(CPT)现状与发展[J].岩土工程学报,2004,26(4):553–556.(LIU Songyu,WU Yankai.On thestate-of-art and development of CPT in China[J].Chinese Journal ofGeotechnical Engineering,2004,26(4):553–556.(in Chinese))
    [6]蔡国军,刘松玉,童立元,等.现代数字式多功能CPTu与中国CPT对比试验研究[J].岩石力学与工程学报,2009,28(5):914–928.(CAI Guojun,LIU Songyu,TONG Liyuan,et al.Comparative studyof modern digital multifunctional CPTu and China s CPT tests[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(5):914–928.(in Chinese))
    [7]ROBERTSON P K,WRIDE C E.Evaluating cyclic liquefactionpotential using the cone penetration test[J].Canadian GeotechnicalJournal,1998,35(3):442–459.
    [8]ROBERTSON P K,CABAL K L.Guide to cone penetration testingfor geotechnical engineering[M].California:Gregg Drilling and Testing,Inc.,2007:85–107
    [9]YOUD T L,IDRISS I M,ANDRUS R D.Liquefaction resistance ofsoils:summary report from the 1996 NCEER and 1998 NCEER/NSFworkshops on evaluation of liquefaction resistance of soils[J].Journalof Geotechnical and Geoenvironmental Engineering,2001,(4):297–313.
    [10]IDRISS I M,BOULANGER R W.Semi-empirical procedures forevaluating liquefaction potential during earthquakes[J].Soil Dynamicsand Earthquake Engineering,2006,26(2/3/4):115–130.
    [11]JUANG C H,JIANG T,ANDRUS R D.Assessing probability-basedmethods for liquefaction potential evaluation[J].Journal of Geotechnicaland Geoenvironmental Engineering,2002,128(7):580–589.
    [12]MOSS R E S,SEED R B,KAYEN R E,et al.CPT-based probabilisticand deterministic assessment of in-situ seismic soil liquefactionpotential[J].Journal of Geotechnical and Geoenvironmental Engineering,2006,132(8):1 032–1 050
    [13]MOSS R E S,SEED R B,KAYEN R E,et al.CPT-based probabilisticassessment of seismic soil liquefaction initiation[R].California,USA:Pacific Earthquake Engineering Research Center,2006:1–57.
    [14]中华人民共和国国家标准编写组.GB50021—2001岩土工程勘察规范[S].北京:中国建筑工业出版社,2002.(The National StandardsCompilation Group of People s Republic of China.GB50021—2001Code for investigation of geotechnical engineering[S].Beijing:ChinaArchitecture and Building Press,2002.(in Chinese))
    [15]中华人民共和国行业标准编写组.TB10018—2003/J261—2003铁路工程地质原位测试规程[S].北京:中国铁道出版社,2003.(TheProfessional Standards Compilation Group of People s Republic ofChina.TB 10018—2003/J261—2003 Code for in situ testing onengineering geology of railway[S].Beijing:China Railway PublishingHouse,2003.(in Chinese))
    [16]MOSS R E S,ROBERT E K,TONG L Y,et al.Reinvestigation ofliquefaction and nonliquefaction case histories from the 1976 Tangshanearthquake[R].California,USA:Pacific Earthquake EngineeringResearch Center,2009:1–77.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心