基于增量动力分析的大型地下洞室群性能化地震动力稳定性评估
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于现有研究成果,将增量动力分析引入大型地下洞室群地震动力稳定性评价领域,形成大型地下洞室群的性能化地震动力稳定性评价方法。首先讨论基于PEER-NGA数据库的强震记录选取方法,根据具体工程的地震地质特性针对性地搜索合适的强震记录,为开展增量动力分析提供最优的输入地震动。然后讨论适用于大型地下洞室群的结构损伤性能参数、地震强度因子的选取,为增量动力分析提供合适的地震强度指标和抗震性能表征。继而立足于现有规范,形成了适用于大型地下洞室群性能化地震动力稳定性评估的2级地震动水平和2级抗震性能水平。最后采用本文的方法及步骤对大岗山水电工程地下洞室群进行地震动力稳定性评估。结果表明,该方法较好地考虑了地震动的随机性,给出洞室群的抗震性能,并可进一步对地震动力稳定性进行概率分析,为大型地下洞室群地震动力灾变失稳提供准则。
Based on existing research results and incremental dynamic analysis(IDA),a performance-based seismic stability assessment approach specified for large underground cavern group is proposed.On the basis of this procedure,the selection of ground motions via PEER-NGA database,which provides the optimal input seismic ground motion for IDA,is discussed;and the selections of intensity measure and damage measure specified for large underground cavern group are processed,thereby providing appropriate earthquake intensity index and seismic performance characterization for IDA.The performance objectives are then classified based on the electricity generating duty of the cavern as serviceability and safety.Reference earthquake motions are specified for each objective as operating basis earthquake and safety evaluation earthquake.The underground cavern group of the Dagangshan hydropower project is taken as a demonstrating case.The results show that randomness of ground motion is well premeditated in this approach;and aseismic performances of cavern group can be given with this approach.Followed by probabilistic results of seismic vulnerability,this approach can provide criterion on the seismic stability assessment of large underground cavern group.
引文
[1]王如宾,徐卫亚,石崇,等.高地震烈度区岩体地下洞室动力响应分析[J].岩石力学与工程学报,2009,28(3):568–575.(WANG Rubin,XU Weiya,SHI Chong,et al.Dynamic response analysis of rock underground caverns in highly seismic region[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(3):568–575.(in Chinese))
    [2]李小军,卢滔.水电站地下厂房洞室群地震反应显式有限元分析[J].水力发电学报,2009,28(5):41–46.(LI Xiaojun,LU Tao.Explicit finite element analysis of earthquake response for underground caverns of hydropower stations[J].Journal of Hydroelectric Engineering,2009,28(5):41–46.(in Chinese))
    [3]赵宝友,马震岳,丁秀丽.不同地震动输入方向下的大型地下岩体洞室群地震反应分析[J].岩石力学与工程学报,2010,29(增1):3 395–3 402.(ZHAO Baoyou,MA Zhenyue,DING Xiuli.Seismic response of large underground rock cavern group considering different incident angles of earthquake waves[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(Supp.1):3 395–3 402.(in Chinese))
    [4]张志国,肖明,陈俊涛.大型地下洞室地震灾变过程三维动力有限元模拟[J].岩石力学与工程学报,2011,30(3):509–523.(ZHANG Zhiguo,XIAO Ming,CHEN Juntao.Simulation of earthquake disaster process of large-scale underground caverns using three-dimensional dynamic finite element method[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(3):509–523.(in Chinese))
    [5]谢礼立,马玉宏,翟长海.基于性态的抗震设防与设计地震动[M].北京:科学出版社,2009:26–27.(XIE Lili,MA Yuhong,ZHAI Changhai.Performance-based seismic design and design ground motion[M].Beijing:Science Press,2009:26–27.(in Chinese))
    [6]李刚,程耿东.基于性能的结构抗震设计:理论方法与应用[M].北京:科学出版社,2004:12–17.(LI Gang,CHENG Gengdong.Performance-based seismic design:theory and application[M].Beijing:Science Press,2004:12–17.(in Chinese))
    [7]Federal Emergency Management Agency.FEMA–445:Next-generation performance-based seismic design guideline[R].Washington,D.C.:Federal Emergency Management Agency,2006.
    [8]中华人民共和国国家标准编写组.GB50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.(The National Standards Compilation Group of People s Republic of China.GB50011—2010 Code for seismic design of buildings[S].Beijing:China Architecture and Building Press,2010.(in Chinese))
    [9]中华人民共和国行业标准编写组.CECS160—2004建筑工程抗震形态设计通则(试用)[S].北京:中国计划出版社,2004.(The Professional Standards Compilation Group of People s Republic of China.General Principles for building engineering anti-seismic form design[S].Beijing:China Planning Press,2004.(in Chinese))
    [10]International Organization of Standardization.ISO23469—2005 Bases for design of structures—seismic actions for designing geotechnical works[S].Geneva:International Organization of Standardization,2005.
    [11]European Committee for Standardization.Euro code 8—2004 Design of structures for earthquake resistances[S].Brussels:European Committee for Standardization,2004.
    [12]Federal Emergency Management Agency.FEMA-P695:Quantification of building seismic performance factors[R].Washington,D.C.:Federal Emergency Management Agency,2009.
    [13]Federal Emergency Management Agency.FEMA-65:Federal guidelines for dam safety–earthquake analysis and design of dams[R].Washington,D.C.:Federal Emergency Management Agency,2005.
    [14]VAMVATSIKOS D,CORNELL C A.Incremental dynamic analysis[J].Earthquake Engineering and Structural Dynamics,2002,31(3):491–514.
    [15]VAMVATSIKOS D.Seismic performance,capacity and reliability of structures as seen through incremental dynamic analysis[Ph.D.Thesis][D].California:Stanford University,2002.
    [16]BERTERO V V.Strength and deformation capacities of buildings under extreme environments[C]//Pister K S.Structural Engineering and Structural Mechanics.New Jersey:Prentice-Hall Englewood Cliffs,1977:211–255.
    [17]韩建平,吕西林,李慧.基于性能的地震工程研究的新进展及对结构非线性分析的要求[J].地震工程与工程振动,2007,27(4):15–23.(HAN Jianping,LU Xilin,LI Hui.State-of-the-art of performance-based earthquake engineering and need for structural nonlinear analysis[J].Journal of Earthquake Engineering and Engineering Vibration,2007,27(4):15–23.(in Chinese))
    [18]王海波.水工抗震学科国际科学技术发展动态跟踪[J].中国水利水电科学研究院学报,2009,7(2):126–133.(WANG Haibo.Dynamic tracing on international science and technology development of hydraulic structure anti-seismic subject[J].Journal of China Institute of Water Resources and Hydropower Research,2009,7(2):126–133.(in Chinese))
    [19]Pacific Earthquake Engineering Research Center.PEER NGA strong motion database[DB/OL].http://peer.Berkeley.edu/nga/,2005-4-27/2011-9-3.
    [20]王刚.地震波选择方法,工具,及其在基于性能的抗震设计中的应用[C]//第四届粤港澳地震科技研讨会.香港:[s.n.],2010:1 027–1 055.(WANG Gang.Design ground motion library and its application to performance-based earthquake design of civil infrastructure[C]//Proceedings of the 4th Guangdong Hong Kong Macao Seminar on Earthquake Science and Technology.Hong Kong:[s.n.],2010:1 027–1 055.(in Chinese))
    [21]Federal Emergency Management Agency.FEMA-450:The 2003 NEHRP recommended provisions for new buildings and other structures[R].Washington,D.C.:Federal Emergency Management Agency,2003.
    [22]American Society of Civil Engineers.Minimum design loads for buildings and other structures[S].Reston,VA:American Society of Civil Engineers,2006.
    [23]陆新征,叶列平,缪志伟,等.建筑抗震弹塑性分析——原理、模型与在ABAQUS,MSC.MARC和SAP2000上的实践[M].北京:中国建筑工业出版社,2009:112–124.(LU Xinzheng,YE Lieping,MIAO Zhiwei,et al.Elasto-plastic analysis of buildings against earthquake—theory,model and implementation in ABAQUS,MSC.MARC and SAP2000[M].Beijing:China Architecture and Building Press,2009:112–124.(in Chinese))
    [24]叶列平,马千里,缪志伟,等.结构抗震分析用地震动强度指标的研究[J].地震工程与工程振动,2009,29(4):9–22.(YE Lieping,MA Qianli,MIAO Zhiwei,et al.Study of earthquake intensities for anti-seismic analysis[J].Earthquake Engineering and Engineering Vibration,2009,29(4):9–22.(in Chinese))
    [25]胡聿贤.地震工程学[M].北京:地震出版社,2006:109–112.(HU Yuxian.Earthquake engineering[M].Beijing:Earthquake Press,2006:109–112.(in Chinese))
    [26]中华人民共和国国家行业编写组.DL5073—2000水工建筑物抗震设计规范[S].北京:中国电力出版社,2001.(The Professional Standards Compilation Group of People s Republic of China.DL5073—2000 Specifications for seismic design of hydraulic structures[S].Beijing:China Electric Power Press,2001.(in Chinese))
    [27]中华人民共和国国家行业编写组.SL203—1997水工建筑物抗震设计规范[S].北京:中国水利水电出版社,1998.(The Professional Standards Compilation Group of People s Republic of China.SL203—1997 Specifications for seismic design of hydraulic structures[S].Beijing:China Water Power Press,1998.(in Chinese))
    [28]中华人民共和国国家标准编写组.GB50199—1994水利水电工程结构可靠度设计统一标准[S].北京:中国计划出版社,1994.(The National Standards Compilation Group of People s Republic of China.GB50199—1994 Unified design standard for reliability of hydraulic engineering structures[S].Beijing:China Planning Press,1994.(in Chinese))
    [29]陈厚群,侯顺载,梁爱虎.水电工程抗震设防概率水准和地震作用概率模型[J].自然灾害学报,1993,2(2):91–98.(CHEN Houqun,HOU Shunzai,LIANG Aihu.Probabilistic level of fortification against earthquake and probabilistic models of seismic actions for hydraulic projects[J].Journal of Natural Disasters,1993,2(2):91–98.(in Chinese))
    [30]上海市城乡建设和交通委员会.DG/TJ08–2064—2009地下铁道建筑结构抗震设计规范[S].上海:上海市建筑建材业市场管理总站,2009.(Shanghai Urban and Rural Construction and Transportation Committee.DG/TJ08–2064—2009 Code for seismic design of subway structures[S].Shanghai:Shanghai Building Materials Industry Market Board,2009.(in Chinese))
    [31]水电水利规划设计总院.水电工程防震抗震研究设计及专题报告编制暂行规定(水电规计[2008]24号)[R].北京:水电水利规划设计总院,2008.(Hydropower and Water Resources Planning and Design General Institute,HydroChina.Interim regulation for seismic design and special reports preparation of hydropower projects(No.2008–24)[R].Beijing:Hydropower and Water Resources Planning and Design General Institute,HydroChina,2008.(in Chinese))
    [32]张玉敏.大型地下洞室群地震响应特征研究[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所,2010.(ZHANG Yumin.Study on response characteristics of large underground cavern group under earthquake[Ph.D.Thesis].Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,2010.(in Chinese))
    [33]四川省地震局工程地震研究院.大渡河大岗山水电站工程场地地震安全性评价报告[R].成都:四川省地震局工程地震研究院,2004.(Engineering Earthquake Institute of Sichuan Earthquake Administration.Seismic hazard analysis of Dagangshan HPP,Dadu river[R].Chengdu:Engineering Earthquake Institute of Sichuan Earthquake Administration,2004.(in Chinese))
    [34]王亚勇,高孟潭,叶列平,等.基于大震和特大震下倒塌率目标的建筑抗震设计方法研究方案[C]//第八届全国地震工程学术会议论文集.重庆:[s.n.],2010:291–297.(WANG Yayong,GAO Mengtan,YE Lieping,et al.Seismic design method based on the collapse rate under large and super earthquake[C]//Proceedings of the 8th National Earthquake Engineering Conference.Chongqing:[s.n.],2010:291–297.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心